
PROBLEM CONTRIBUTION

SOLUTION

LIMITATIONS AND FUTURE WORK RELATED WORK

TITLE:

AUTHORS: Benjamin Steenhoek <benjis@iastate.edu>, Wei Le

Refactoring Programs to Improve the Performance of Deep Learning for Vulnerability Detection

• Limited/imbalanced vulnerability
datasets hurt model performance

• Synthetic data does not represent
real-world code

• Existing automatic labeling is often
noisy or biased

• Manual labeling is expensive

• General technique: refactoring for
data augmentation

• Heuristics targeting vocabulary and
data imbalance issues

• Implement and evaluate on dataset of
C programs with SOTA models Devign
[1] and ReVeal [2]

Limitations
• Limited search space for refactoring
• Only implemented 5 operations for C
Future work
• Unsound mutations for greater

diversity
• More languages or refactoring

operations for more general usage

[1] Zhou, Y. et al. “Devign: Effective vulnerability
identification by learning comprehensive program
semantics via graph neural networks.” NIPS (2019).

[2] Chakraborty, S. et al. “Deep Learning based
Vulnerability Detection: Are We There Yet?” IEEE TSE
(2021).

[3] Rabin, M. R. I. et al. “Evaluation of Generalizability
of Neural Program Analyzers under Semantic-
Preserving Transformations.” ArXiv (2019).

Refactor

• Refactor programs to
increase diversity [3]

• Behavior is unchanged
• Apply varied sequences of

refactorings to generate
diverse programs

• Refactor buggy programs to
rebalance dataset

• Increased test F1 by 2.12
(Devign) and 1.33 (ReVeal)

Master’s thesis. Unpublished as of date.

Original program Refactored program

