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Refactoring Programs to Improve the Performance of Deep Learning for Vulnerability Detection

• Limited/imbalanced vulnerability 
datasets hurt model performance

• Synthetic data does not represent 
real-world code

• Existing automatic labeling is often 
noisy or biased

• Manual labeling is expensive

• General technique: refactoring for 
data augmentation

• Heuristics targeting vocabulary and 
data imbalance issues

• Implement and evaluate on dataset of 
C programs with SOTA models Devign 
[1] and ReVeal [2]

Limitations
• Limited search space for refactoring
• Only implemented 5 operations for C
Future work
• Unsound mutations for greater 

diversity
• More languages or refactoring 

operations for more general usage
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Refactor

• Refactor programs to 
increase diversity [3]

• Behavior is unchanged
• Apply varied sequences of 

refactorings to generate 
diverse programs

• Refactor buggy programs to 
rebalance dataset

• Increased test F1 by 2.12 
(Devign) and 1.33 (ReVeal)
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