
An Empirical Study of Open-Source Development
Practices for Safety Certified Software

Benjamin Steenhoek

Abstract—Open-source software can improve the quality of a
software project and allow greater openness and user engage-
ment. However, safety-critical software has special requirements
to maintain certification which makes it difficult to develop as
open-source. Certain projects use special development practices
such as automated testing and code style checkers inorder to
develop their software as open-source while maintaining safety
standards. In order to illuminate these development practices,
we expand on a recently compiled database of 42 open-source
and safety-critical projects. Our analysis (1) describes the level to
which open-source projects seek to meet safety standards and (2)
describes the projects’ development practices used to integrate
community contributions while maintaining safety standards

I. INTRODUCTION

Safety-critical software is software used in a system in
which failure may cause great harm to people or the en-
vironment. Safety-critical software often carries special re-
quirements for documentation and development processes to
ensure that the software is sufficient quality. Sometimes,
formal standards are used to make sure the software meets the
requirements. Standards often require submission of artifacts
to the standard certification board. These include artifacts such
as FMEA and safety manuals, as well as processes such
as requirements elicitation and safety culture. As well, the
software should comply with more stringent requirements such
as high test coverage and coding style guidelines.

Open-source software is software that is released with a
license that allows users to read and modify the source code.
The software’s source code is distributed publicly for the
purpose of modification or reuse. Part of the motivation for
open-source software is that it can lead to higher-quality code.
A principle coined as Linus’s Law states that ”given enough
eyeballs, all bugs are shallow”. When many users examine the
source code, bugs are found relatively quickly, even before
they show up in practice.

Where the two classes overlap, some open-source projects
try to meet a safety standard. The extra artifacts required by the
safety standard can slow down the development process ad can
be difficult for community contributors to fulfill. Some projects
employ automation and development practices in order to meet
their goals of being open-source and maintaining their safety
standard. We examine the prevalence of safety certification in
open-source development, and the development practices used
to maintain it.

This report is based on a previous dataset compiled by
Rafaila et al. [1]. We extend their dataset by (1) examining
the safety standards targeted by these projects and (2) tallying

the quality assurance methods used to vet open-source contri-
butions 1.

II. BACKGROUND

We define a safety standard as a set of requirements set to
ensure the safety of a system. In order to be meaningful, the
standard should be recognized by some government or industry
and improve the confidence that a safety-critical system is
indeed safe. In order to show that it meets a standard, a project
must show evidence that its system is safe (according to the
criteria defined by the standard), and if the project changes,
the evidence must be updated.

A pull request (PR) is a request to integrate a set of code
changes into a version control repository. PRs are the main
way that projects hosted on GitHub and GitLab integrate con-
tributions from the open-source community. The contributor
makes changes in a fork (a private copy) of a repository,
then submits a PR requesting to integrate the changes into
the repository, in the form of a set of changes to the files and
(usually) a message explaining the reasoning or methods of
the PR.

Continuous integration (CI) is a set of processes for au-
tomatically testing and integrating code changes. It is used
in open-source projects to reduce the manual effort of inte-
grating code changes. Often, open-source projects use CI to
automatically build the projects, check style rules, or run tests,
especially when integrating a PR.

III. RESEARCH QUESTIONS

In order to study the development practices employed in
open-source safety-critical software development, we devel-
oped 2 research questions.

a) RQ1: Is it common for open-source projects to meet
a formal safety standard?: To answer this question, we cate-
gorized the projects by (1) commercial backing and (2) safety
standard. We hypothesized that the backing category will
be needed because projects with commercial or government
backing will be more likely to target a safety standard.

b) RQ2. What quality assurance processes are used to
integrate community contributions while continuing to meet
their chosen safety standard?: To answer this question, we
tallied the quality assurance practices detailed in the contribu-
tion guidelines of each project.

1The original dataset’s table, extended with the data we collected,
are shown here: https://docs.google.com/spreadsheets/d/1HlQkQLUdyf8l
mIy6QRjxTY3iDrK724wXQCHH8ucAbM/edit?usp=sharing.

https://docs.google.com/spreadsheets/d/1HlQkQLUdyf8l_mIy6QRjxTY3iDrK724wXQCHH8ucAbM/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1HlQkQLUdyf8l_mIy6QRjxTY3iDrK724wXQCHH8ucAbM/edit?usp=sharing


IV. RESULTS

A. RQ1: Is it common for open-source projects to meet a
formal safety standard?

In order to examine this question, we gathered extra infor-
mation about the projects in the dataset.

We categorized each project by their commercial backing
based on 4 categories:

• Volunteer projects are governed by a single maintainer
or board of maintainers primarily for community benefit
rather than commercial profit.

• Government projects are maintained by a government
organization.

• Commercial projects are maintained as open-source by
a company.

• Research projects are maintained for the sake of proto-
typing and research, but are not yet employed in a real
application.

To search each project’s backing, we navigated to their
”About” page. If the page noted that it was Commercial, Gov-
ernment, or Research, we noted it; otherwise, we assumed
the project was Volunteer.

To search each project’s certification status, we used a two-
pronged approach. (1) we searched on the project’s home page,
about page, and README page for keywords ”safety” and
”certification”. (2) we searched <project name> safety and
<project name> certification in Google and browsed the first
page of results for material directly related to the project and
a formal safety standard.

Government and Commercial projects usually have a team
of developers who are employed by the company. Because
of the organizational similarities, these categories are often
grouped together in our analysis. The development team
reserves decision power for the architecture of the project and
makes most of the core contributions, with additional support
and usage by the community. The project is usually maintained
as part of a product or initiative. This differs from the ”full
bazaar” open-source model used by Volunteer projects, where
the project is maintained for the sake of novelty or community
benefit rather than commercial profit.

Several Volunteer projects were originally community-
driven but receive most of support or are now maintained by a
commercial entity, presenting difficulty for our classification.
These projects are still listed as Volunteer unless they were
directly sold as a product.

These categorizations are driven by the material published
by the developers of the projects and were collected manually.

We also categorized each project based on whether it
attempts to meet a safety standard. The shared property of
safety standards is that they have stringent requirements of
evidence which asserts the safety of the product. This evidence
is sometimes based on the quality of the development team,
which poses challenges for open-source projects which may
gain contributions from the global development community.
The evidence must also be updated when the software is

updated and usually requires special expertise to write it,
which adds effort to already short-staffed Volunteer projects.

The bottom row of Table I shows the total counts of projects
by organization type. We see that most of the projects are
Volunteer, followed by Commercial and Research.

Table I shows the proportion of projects which target a
safety standard for each motivation category. We see that only
8 projects (19% of total dataset) total seek to meet a formal
safety standard, and only 4 projects (9.5% of total) fully meet
a standard.

The 1 commercial project meeting a standard is the Apollo
self-driving system. Baidu Apollo is an open-source au-
tonomous vehicle architecture which has been deployed for
testing in robotaxi, minibus, and valet parking applications. It
has obtained IATF 16949, ISO 26262, and A-SPICE certifica-
tions, as well as T4 road test licenses in China for driverless
road testing.

The 2 volunteer projects meeting safety standards are
FreeRTOS and SoftRF. FreeRTOS is a Real-Time Operating
System (RTOS). A RTOS is guaranteed to be compliant with
real-time requirements, such as predictability and determinism.
FreeRTOS has a variant named SafeRTOS which is pre-
certified for functional safety. The two projects share a high-
level kernel model, but SafeRTOS diverges significantly from
FreeRTOS in that it is a from-scratch rewrite following IEC
61508-3 SIL 3 process. SafeRTOS is pre-certified to IEC
61508 SIL 3 and ISO 26262 ASILD, and is designed to
easily transition from FreeRTOS to SafeRTOS for safety-
certified applications. SoftRF is a DIY general aviation prox-
imity awareness system with open-source hardware. SoftRF
is approved for compliance by the FCC (in the US) and CE
(parallel in European Union), meaning it is approved for land
use and with genuine factory firmware. This is less of a safety
certification but does have ramifications for the compliance
and safety of the product.

The 3 projects with certifications do not openly display the
documentation they submitted to gain the compliance. It will
be an interesting future work to discover the practices of other
software projects which make their documentation more open.

8 projects are attempting to gain safety certification but have
not yet gained it. We examine 3 projects in closer depth.
Nightscout is an open-source Continuous Glucose Monitor
(CGM), which monitors the glucose level in blood. This is an
important device for diabetics to maintain the healthy blood
sugar level. The developers are seeking formal clearance from
the FDA and have met with the FDA several times, but do
not have formal clearance, partly due to their open-source
model. “Nightscout represents a novel application of FDA
rulemaking in that it is ”open-sourced” having a distributed
model of ownership and/or responsibility for compliance with
various medical device, treatment, and research overseers.“ 2

ChibiOS is an free and open-source RTOS. It has sought to
be compatible with safety certification and provides example

2https://t1pal.com/legal/faq 8 18 2020 13 38

https://t1pal.com/legal/faq_8_18_2020_13_38


Certified Commercial/Government Volunteer Research Total
Yes 1 2 0 3
WIP 3 5 0 8
No 9 15 7 31
Total 13 22 7 42

TABLE I
NUMBER OF PROJECTS MEETING STANDARD BY ORGANIZATION TYPE

codes to this effect 3, but does not have safety certification
of its own 4. Comma.AI OpenPilot is an open-source driver
assistance system. It is designed to be deployed in a module
to drive individual cars and is compatible with a wide range of
vehicles. It observes ISO 26262 safety guidelines. However,
it is not formally certified; the Comma.AI team has claimed
that they are in the process of gaining formal certification.
Notably, the Baidu company focuses on deploying to a fleet
of vehicles managed by themselves, while Comma.AI focuses
on users deploying and maintaining the self-driving module in
their own car.

No projects from the Research category target a formal
safety standard. This is probably because these projects are
developed as tools used to investigate novel research, but
are not put directly into production. Since they will not be
commercialized or put people at risk, they do not need a safety
certification. Most of these projects come with an informal
disclaimer that warns that the project should be used ”at your
own risk”.

The main result of RQ1 is that it is not common for open-
source projects to meet a safety standard as only 3 projects
are formally certified. However, several projects maintain a
certain level of safety even if not formally certified. RQ3 will
examine the reasons that many projects do not meet standards.
Surprisingly, the Volunteer certified projects actually outnum-
bered the Commercial projects, though both were slim.

B. RQ2: What quality assurance processes are used to inte-
grate community contributions while continuing to meet their
chosen safety standard?

Many projects which welcome open-source contribu-
tion include a contribution guidelines (such as a file
CONTRIBUTING.md) readily available in their software
repository. In order to investigate the usage of quality as-
surance processes, we examined the contribution guidelines
of each project’s repository. This is the entry point for new
contributors, so intuitively, the . We noted whether each project
employed some common quality assurance processes:

1) Coding style guide: some projects conform to a coding
style guide/standard in order to get rid of common code
smells. To find these, we searched for the keywords
”style” and ”convention” in the repository index and
contributor’s guide.

2) Unit/integration tests: many projects use unit tests to
test individual units of software, or integration tests to
test the integration between multiple modules (often in

3https://forum.chibios.org/viewtopic.php?f=3&t=5269
4https://forum.chibios.org/viewtopic.php?t=1736

an operational environment). Some projects also require
contributors to provide tests for all new code. To find
these, we searched the keyword ”test” in contributor’s
guide and manually extracted the information.

3) Automatic PR test: many projects automatically test
all significant changes to the repository. To find these,
we searched for configuration files which configured
continuous integration tools such as GitHub actions and
Travis CI, and badges on the README.md file.

33/42 projects (79%) have contributor guides on their repos-
itory. These guides are the entry point for those interested in
contributing to the project. If a project is open to contributions,
it is essential that the project provide a contribution guide to
reduce the resistance to submitting contributions. Many contri-
bution guides also guide first-time contributors by suggesting
that they start by adding to the project’s documentation or unit
tests (as opposed to implementing features).

25/42 projects (60%) require contributions to conform to
style guides. The style guides control various stylistic elements
such as whitespace and indentation, as well as semantic
elements such as usage of macros and memory allocation.
8 out of the 25 (32%) use a standard style guide 5, while
the remaining 17 projects (68%) use a custom style guide.
Several projects cite the fact that there are many competing
coding style standards as motivation for forming a custom
standard. 20 out of the 22 (91%) cite tools to reformat and
check the code automatically. An automatic tool significantly
reduces the effort of code review [2]. Most projects use a
standard formatting tool such as clang-format, rather than
implementing the tools from scratch.

3 projects (ChibiOS, FreeRTOS, and Zephyr) conform to
most of the MISRA-C guidelines [3], which are more stringent
than stylistic issues such as whitespace. These guidelines
specify best practices for safety-critical code and can be
thought of as a subset of the C language which restricts
developers from using error-prone constructs, libraries, and
features.

19/42 projects (45%) recommend or require contributors to
add tests for new functionality which is added. Most projects
enforce this recommendation/requirement during code review,
but several projects also measure this automatically by main-
taining a high level of line or branch coverage. For example,
the Autoware project’s maintainers ”do not accept changes that
reduce the coverage value [below 100%]” [4]. This automatic
enforcement reduces the strain on the developers during code
review.

30/42 projects (71%) automatically build and test contribu-
tions to their project. Most often, this is done on the level of
a pull request (PR). Once the PR is submitted, the automatic
tests are run by a continuous integration (CI) worker. If the
tests succeed, the PR is annotated with a flag, and if they fail,
the worker usually reports the degree and reasons for failure.
This is a common method to make sure that the unit test suite
still passes after every contribution.

5e.g. ROS, ISO C99, Google

https://forum.chibios.org/viewtopic.php?f=3&t=5269
https://forum.chibios.org/viewtopic.php?t=1736


17/42 projects (40%) have extra integration tests or cov-
erage. For example, PX4 requires contributors to test their
changes in a real flight and prefers that contributors upload
their log file so the maintainers can review it. Testing on
real hardware provides extra verification that the entire system
is safe (by running in the real environment) and allows
integration issues to be spotted which may not arise in software
alone (such as those caused by non-determinism). For another
example, ArduPilot publishes a Software In The Loop (SITL)
tesing tool, which allows the build to pilot a plane, copter,
or rover in a simulator. It is difficult to test the software on
real hardware, especially automatically, and this option allows
testing the integration with the hardware model without the
difficulty.

The main result for RQ2 is that testing and style guides are
commonly used to maintain safety standards in open-source
projects. Even though the projects do not formally meet a
safety certification, they seek to uphold a certain level of
quality; to this end, 60% of projects required contributions to
meet a style guide, and 71% of projects required contributions
to pass an automated test suite.

V. THREATS TO VALIDITY

The original dataset did not come from a comprehen-
sive search, so it may be missing safety-critical open-source
projects or may not be representative of the typical safety-
critical open-source project.

Additionally, our extensions to the dataset were not com-
prehensive, but employed keyword searches and manual re-
view. This may have missed some results where projects
were certified to a safety standard, or included some quality
assurance practice, but we did not find it. Several of these
projects may have been forked (copied and used as a basis
for further development) by projects which went on to gain
safety certification; we did not investigate these ”secondary-
type” projects.

VI. FUTURE WORK

Interesting future work includes exploring problems and
solutions used by safety-critical open-source projects. Our
current study extends the original dataset with indication
of the potential difficulties and with information about the
development practices used, but does not deeply investigate
the perspectives of the projects themselves and other projects
which have spoken out about the difficulties of maintaining
safety certification materials as open-source. Some standards
preclude open-source development because the development
process must be under watch (explained here by a member
of the PX4 forum [5]). As well, the effort involved with
maintaining safety certification often outweighs the benefits
of the certification. Several new safety standards have been
proposed [6? , 7] which are compatible with open-source
development and the usage of open-source software.

Another interesting future work would examine the statistics
of the contributions to safety-critical open-source projects.
Intuitively, a safety-critical project may not get as many PRs

because it has more stringent code quality requirements. As
well, some safety-critical applications remain in use without
updates for a long time, because the updates would require too
much effort or risk to integrate into an existing safety-critical
system.

The data added to the dataset can be used to examine the
relationship between code quality and quality assurance prac-
tices. The projects which integrate quality assurance practice
such as testing and code style guides should have a lower
rate of defects, and it would be interesting to investigate this
further.

REFERENCES

[1] R. Galanopoulou and D. Spinellis, “A Dataset of Open-
Source Safety-Critical Software,” p. 7.

[2] G. J. Holzmann, “Right Code,” IEEE Software, vol. 38,
no. 1, pp. 13–15, Jan. 2021. [Online]. Available:
https://ieeexplore.ieee.org/document/9305891/

[3] “MISRA C,” Apr. 2022, page Version ID: 1084818860.
[Online]. Available: https://en.wikipedia.org/w/index.php?
title=MISRA C&oldid=1084818860

[4] “Guidelines and Best-Practices,” Nov. 2020.
[Online]. Available: http://web.archive.org/web/
20201125220251/https://autowarefoundation.gitlab.io/
autoware.auto/AutowareAuto/contributor-guidelines.html

[5] “V1.9 Software ”Release notes preview” - #4 by auturgy
- Discussion Forum, for PX4, Pixhawk, QGroundControl,
MAVSDK, MAVLink,” Apr. 2022. [Online]. Available:
http://web.archive.org/web/20220427041239/https:
//discuss.px4.io/t/v1-9-software-release-notes-preview/
9379/4

[6] “Pixhawk | The hardware standard for open-source
autopilots.” [Online]. Available: https://pixhawk.org/

[7] “open-DO | Toward a cooperative and open framework
for the development of certifiable software.” [Online].
Available: https://www.open-do.org/

https://ieeexplore.ieee.org/document/9305891/
https://en.wikipedia.org/w/index.php?title=MISRA_C&oldid=1084818860
https://en.wikipedia.org/w/index.php?title=MISRA_C&oldid=1084818860
http://web.archive.org/web/20201125220251/https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/contributor-guidelines.html
http://web.archive.org/web/20201125220251/https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/contributor-guidelines.html
http://web.archive.org/web/20201125220251/https://autowarefoundation.gitlab.io/autoware.auto/AutowareAuto/contributor-guidelines.html
http://web.archive.org/web/20220427041239/https://discuss.px4.io/t/v1-9-software-release-notes-preview/9379/4
http://web.archive.org/web/20220427041239/https://discuss.px4.io/t/v1-9-software-release-notes-preview/9379/4
http://web.archive.org/web/20220427041239/https://discuss.px4.io/t/v1-9-software-release-notes-preview/9379/4
https://pixhawk.org/
https://www.open-do.org/

	Introduction
	Background
	Research Questions
	Results
	RQ1: Is it common for open-source projects to meet a formal safety standard?
	RQ2: What quality assurance processes are used to integrate community contributions while continuing to meet their chosen safety standard?

	Threats to Validity
	Future Work

