
Understanding and improving deep learning models for vulnerability detection

by

Benjamin Jeremiah Steenhoek

A dissertation submitted to the graduate faculty

in partial fulfllment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Major: Computer Science

Program of Study Committee:
Wei Le, Major Professor

Hongyang Gao
Myra Beth Cohen

Qi Li
Samik Basu

The student author, whose presentation of the scholarship herein was approved by the program of
study committee, is solely responsible for the content of this dissertation. The Graduate College
will ensure this dissertation is globally accessible and will not permit alterations after a degree is

conferred.

Iowa State University

Ames, Iowa

2024

Copyright © Benjamin Jeremiah Steenhoek, 2024. All rights reserved.

ii

DEDICATION

This dissertation is dedicated to my family, who have supported me in every way possible.

To my wife and best friend, Cierrah, whose unwavering love, encouragement, and belief in me

have become my foundation. You have been my constant support and companion. Thank you for

your patience and sacrifces, and for standing with me through every challenge and blessing.

To my dad, Loren Steenhoek, for inspiring me to pursue higher education and always being

proud of me; to my mom, Younghee Steenhoek, for giving me strength; to my brother, AJ

Steenhoek, for going side-by-side with me throughout my schooling, from the crib until now; and

to my late 할머니, 주 진찬, for cheering me on through all of it.

I love you, thank you, and would never have completed this journey without you.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF TABLES . vii

LIST OF FIGURES . ix

LIST OF FIGURES . ix

ACKNOWLEDGMENTS . xii

ABSTRACT . xiv

CHAPTER 1. GENERAL INTRODUCTION . 1
1.1 Contributions . 2
1.2 Outline . 3
1.3 Bibliography . 4

CHAPTER 2. AN EMPIRICAL STUDY OF DEEP LEARNING MODELS FOR VULNER-
ABILITY DETECTION . 6
2.1 Introduction . 7
2.2 A Survey of Models and their Reproduction . 9
2.3 Research Questions and Findings . 12

2.3.1 Capabilities of Deep Learning Models . 12
2.3.2 The Training Data . 21
2.3.3 Internals of Deep Learning . 25

2.4 Threats to Validity . 30
2.5 Related Work . 31
2.6 Conclusions and Future Work . 32
2.7 Acknowledgements . 32
2.8 Bibliography . 33

CHAPTER 3. DEEPDFA: DATAFLOW ANALYSIS-INSPIRED DEEP LEARNING FOR
EFFICIENT VULNERABILITY DETECTION . 41
3.1 Introduction . 42
3.2 Overview . 44
3.3 Rationale . 46

3.3.1 Datafow Analysis for Vulnerability Detection 46
3.3.2 Analogy of Graph Learning and Datafow Analysis 47

iv

3.3.3 The Novelty of Our Work . 49
3.4 Approach . 49

3.4.1 Abstract Datafow Embedding . 50
3.4.2 Using Graph Learning to Propagate Datafow Information 52

3.5 Evaluation . 55
3.5.1 Implementation . 55
3.5.2 Experimental setup . 56
3.5.3 Efectiveness . 61
3.5.4 Efciency . 62
3.5.5 Generalization . 65
3.5.6 Ablation studies . 67

3.6 Threats to Validity and Discussions . 67
3.7 Related Work . 69
3.8 Conclusions and Future Work . 70
3.9 Acknowledgements . 71
3.10 Bibliography . 71
3.A Appendix: Baseline reproductions . 80
3.B Appendix: Programs that are removed . 80
3.C Appendix: Additional efectiveness results . 81
3.D Appendix: Training times of all models . 81
3.E Appendix: Model sizes . 82
3.F Appendix: Additional cross-project evaluation results 83

CHAPTER 4. TRACED: EXECUTION-AWARE PRE-TRAINING FOR SOURCE CODE . 84
4.1 Introduction . 85
4.2 Overview . 89
4.3 Tracing & Feature Engineering . 91

4.3.1 Representing Program States . 91
4.3.2 Quantized Variable Values . 93
4.3.3 Building Learnable Labels for Code Models 95

4.4 Model . 96
4.4.1 Execution-aware Pre-training . 96
4.4.2 Task-specifc Fine-tuning . 100

4.5 Experimental Setup . 101
4.5.1 Trace Collection . 101
4.5.2 Dataset . 102
4.5.3 Model Confguration . 104

4.6 Evaluation . 105
4.6.1 RQ1. Efectiveness of TRACED in Static Estimation of Execution 105
4.6.2 RQ2. Efectiveness of TRACED’s Pre-training Objectives 108
4.6.3 RQ3. Efectiveness of TRACED’s Quantized Variable Values 109
4.6.4 RQ4. TRACED’s Performance in Code Understanding Tasks 111

4.7 Related Work . 112
4.8 Threats to Validity . 113
4.9 Conclusion . 114
4.10 Acknowledgments . 114

v

4.11 Bibliography . 115

CHAPTER 5. TO ERR IS MACHINE: VULNERABILITY DETECTION CHALLENGES
LLM REASONING . 124
5.1 Introduction . 125
5.2 Can LLMs Efectively Detect Vulnerabilities? . 129
5.3 Why do LLMs Fail to Reason About Vulnerabilities? 132

5.3.1 Does Model Size Matter? . 135
5.3.2 Do Model Training Data & Methods Matter? 136
5.3.3 Does Additional Domain Knowledge Help? 138

5.4 Related Work . 140
5.5 Conclusion . 140
5.6 Bibliography . 141
5.A Appendix: Vulnerability detection prompts . 152
5.B Appendix: Models . 153
5.C Appendix: Benchmarks for other domains . 154
5.D Appendix: Simple CWE examples . 155
5.E Appendix: Error analysis methodology . 156

5.E.1 Inter-rater agreement . 156
5.E.2 Error analysis UI . 156
5.E.3 Error categories . 158

CHAPTER 6. CLOSING THE GAP: A USER STUDY ON THE REAL-WORLD USEFUL-
NESS OF AI-POWERED VULNERABILITY DETECTION & REPAIR IN THE IDE . 160
6.1 Introduction . 161
6.2 User Study Interface . 163

6.2.1 IDE Integration . 164
6.2.2 Model Architecture & Training . 165
6.2.3 Evaluating Detection and Fix Capabilities . 168

6.3 User Study Design . 169
6.3.1 Study Design . 169

6.4 User Study results . 173
6.4.1 RQ1: Is DeepVulGuard useful in practice? . 173
6.4.2 RQ2: Which aspects of vulnerability detection + fx tools are most useful? . 176
6.4.3 RQ3: What features do developers want from vulnerability detection + fx

tools? . 180
6.5 Discussions . 182
6.6 Threats to Validity . 183
6.7 Related Work . 184
6.8 Conclusions . 185
6.9 Bibliography . 186
6.A Appendix: Detection model . 194

6.A.1 Training procedure . 194
6.A.2 Dataset statistics . 195
6.A.3 Full list of languages in the training dataset, by fle extension 195
6.A.4 Hyperparameters . 196

vi

CHAPTER 7. GENERAL CONCLUSION . 197
7.1 Summary of Contributions . 197
7.2 Future Work . 198
7.3 Bibliography . 199

vii

LIST OF TABLES

Page

Table 2.1 11 Reproduced Models. 10

Table 2.2 Model reproduction on their original datasets. 11

Table 2.3 Variability over 3 random seeds on Devign dataset. 13

Table 2.4 Agreement across diferent models. 13

Table 2.5 Five types of vulnerabilities. 14

Table 2.6 The similarity of important feature sets between every two models. 26

Table 2.7 The frequently highlighted code features. 27

Table 3.1 OUT [v] at each iteration of DFA. 54

Table 3.2 Hyperparameters used for training DeepDFA. 56

Table 3.3 Performance comparison between DeepDFA and baselines. 60

Table 3.4 Comparison with non-transformer models. 60

Table 3.5 Comparison with transformer models. 60

Table 3.6 Results of statistical tests for model comparison. 62

Table 3.7 Training and inference time of DeepDFA and baselines. 63

Table 3.8 Performance of DeepDFA and baselines on limited data. 64

Table 3.9 How do the models handle unseen projects? 65

Table 3.10 Generalization performance of DeepDFA and baselines. 66

Table 3.11 Ablation study evaluated on DbgBench. 67

Table 3.12 Ablation study evaluated on the Big-Vul test dataset. 68

viii

Table 3.13 Initial trial run of performance on 100% of the Big-Vul dataset. 81

Table 3.14 Approximate training times of all models. 82

Table 3.15 DeepDFA was smallest in terms of parameter count. 82

Table 3.16 Initial trial run of cross-project evaluation with 100% of the dataset. 83

Table 4.1 TRACED’s design of quantized variable values. 94

Table 4.2 Details of downstream task datasets. 103

Table 4.3 Performance on static execution estimation. 106

Table 4.4 Comparison of Clone Retrieval and bug detection. 111

Table 5.1 Performance on vulnerability detection vs. NL/math reasoning, code gener-
ation, and code execution. 130

Table 5.2 Models’ abilities to distinguish pairs of vulnerable and non-vulnerable ex-
amples. 131

Table 5.3 Error analysis from 300 responses covering 100 programs. 133

Table 5.4 14 models we studied. 154

Table 5.5 Text generation parameters we used. 154

Table 5.6 The performance of the studied models on simple CWE examples. 156

Table 5.7 Defnitions of Model Reasoning Errors. 159

Table 6.1 Proportion of alerts in each language. 195

ix

LIST OF FIGURES

Page

Figure 2.1 Same-bugtype and cross-bugtype performance. 16

Figure 2.2 Comparative performance on evaluation sets selected according to LR model
difculty score. 19

Figure 2.3 Coefcients of LR models trained on the stable examples from the Devign
dataset. 20

Figure 2.4 F1 score on a held-out test set when models are trained with increased
portions of the training dataset. 22

Figure 2.5 Studies on project composition in training data. 24

Figure 3.1 Overview of DeepDFA. 45

Figure 3.2 Datafow Analysis. 48

Figure 3.3 Graph Learning. 48

Figure 3.4 Analogy of information propagation in Datafow Analysis and Graph Learning. 48

Figure 3.5 Abstract datafow embedding generation. 51

Figure 4.1 A motivating example for TRACED. 86

Figure 4.2 Overview of the workfow of TRACED. 90

Figure 4.3 Program states with concrete runtime values. 92

Figure 4.4 High-level model architecture of TRACED. 97

Figure 4.5 A qualitative example of execution coverage prediction. 107

Figure 4.6 A qualitative example of runtime value prediction. 108

Figure 4.7 Comparing TRACED’s design of quantized variable values with other value
abstraction strategies. 110

x

Figure 5.1 Example of a Bufer Overfow (BOF). 126

Figure 5.2 Example of a Null-Pointer Dereference (NPD). 126

Figure 5.3 Examples of vulnerability detection as a complex code reasoning task. . . . 126

Figure 5.4 Vulnerability detection performance. 129

Figure 5.5 Error categories observed in responses from all LLMs. 132

Figure 5.6 Missed Bounds/NULL check. 134

Figure 5.7 Misunderstood arithmetic operation. 135

Figure 5.8 Larger models did not improve on vulnerability detection. 136

Figure 5.9 Expanding the training dataset and incorporating fne-tuning had minimal
impact on vulnerability detection capability. 137

Figure 5.10 Example of our CoT-Annotations prompt. 138

Figure 5.11 Domain knowledge is somewhat helpful for one step but not much for overall
performance. 139

Figure 5.12 A simple integer overfow example collected from CWE database. 155

Figure 5.13 Code LLAMA’s response to the simple example in Figure 5.12. 155

Figure 5.14 Error analysis user interface. 157

Figure 6.1 An overview of DeepVulGuard’s user interface on an example program. . . . 164

Figure 6.2 An overview of DeepVulGuard’s detection workfow. 166

Figure 6.3 DeepVulGuard’s LLM flter prompt. 166

Figure 6.4 DeepVulGuard’s fx model prompt. 167

Figure 6.5 Performance of DeepVulGuard’s detection component on SVEN. 168

Figure 6.6 Participant demographics and tool adoption. 170

Figure 6.7 Summary of participants’ overall perceptions of DeepVulGuard, from our
post-interview survey. 174

https://Figure5.14
https://Figure5.10

xi

Figure 6.8 Participant responses to LLM-fltered alerts and LLM-generated fxes while
using DeepVulGuard. 176

Figure 6.9 Participants’ in-use feedback on the aspects of DeepVulGuard. 177

Figure 6.10 The relative frequency of features suggested by the study participants. . . . 181

xii

ACKNOWLEDGMENTS

I would like to take this opportunity to express my heartfelt gratitude to those who helped me

throughout the research and writing of this dissertation.

First, I extend my deepest thanks to my advisor, Dr. Wei Le, for her advice, patience,

encouragement, and critiques. I am truly grateful to have an advisor who treats me as a peer and

looks out for my best interests. Thank you, Dr. Le, for the time and efort you have spent for me.

I also thank our faculty collaborators, Drs. Baishakhi Ray and Earl Barr, and my committee

members, Drs. Hongyang Gao, Myra Cohen, Qi Li, and Samik Basu, for their thought-provoking

questions and research discussions.

My sincere thanks to my internship mentors at Microsoft, Drs. Roshanak Zilouchian

Moghaddam, Michele Tufano, and Alexey Svyatkovskiy, for being supportive, engaged, and

inspiring leaders; for setting an example of scientifc excellence; and for treating me with kindness

while encouraging me to push my limits.

Thank you to all of my colleagues, especially Md Mahbubur Rahman and Yangruibo (Robin)

Ding, for being dependable and pleasant co-authors; I’ve enjoyed every moment of working

together with you. A special thank-you to Yaojie (Jason) Hu for his encouragement to scientifc

rigor, advice on writing and experiments, steadfast support, and many enjoyable evenings spent

workshopping research ideas.

Thank you to the many people who helped me both directly and indirectly. I have learned

from and been helped by many researchers, colleagues, and friends in the course of graduate

school. I also want to also ofer my appreciation to those who were willing to participate in my

surveys and observations, without whom my work would not have been possible.

Your collective support has been essential to the completion of this achievement. For that, I

am deeply grateful.

xiii

This research was partially supported by the U.S. National Science Foundation (NSF) under

Awards #1816352 and #2313054, and partially performed during an internship at Microsoft. Any

opinions, fndings, conclusions, or recommendations expressed herein are those of the authors and

do not necessarily refect those of the U.S. Government, NSF, or Microsoft.

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1816352
https://www.nsf.gov/awardsearch/showAward?AWD_ID=2313054

xiv

ABSTRACT

Vulnerability detection tools are essential for ensuring security while maintaining software

development velocity. Deep Learning (DL) has shown potential in this domain, often surpassing

static analyzers on certain open-source datasets. However, current DL-based vulnerability

detection systems are limited, resulting in models that are poorly understood, inefcient, and

struggle to generalize, and their applicability in practical applications is not well understood. In

this dissertation, we comprehensively evaluate state-of-the-art (SOTA) DL vulnerability detection

models, including Graph Neural Networks (GNNs), fne-tuned transformer models, and Large

Language Models (LLMs), yielding a deeper understanding of their benefts and limitations and a

body of approaches for improving DL for vulnerability detection using static and dynamic

analysis.

First, we empirically study the model capabilities, training data, and model interpretation of

fne-tuned graph neural networks and transformer models and provide guidance on understanding

model results, preparing training data, and improving the robustness of the models. We found

that state-of-the-art models were limited in their ability to leverage vulnerability semantics, which

are critical aspects of vulnerability detection.

Building on these fndings, we developed DeepDFA and TRACED, which integrate static and

dynamic analysis into DL model architecture and training. DeepDFA is a GNN architecture and

learning approach inspired by datafow analysis. DeepDFA outperforms several other

state-of-the-art models, is efcient in terms of computational resources and training data, and

generalizes to novel software applications better than other SOTA approaches. TRACED is a

transformer model which is pre-trained on a combination of source code, executable inputs, and

execution traces. TRACED improves upon statically pre-trained code models on predicting

xv

program coverage and variable values, and outperforms statically pre-trained models in two

downstream tasks: code clone retrieval and vulnerability detection.

Additionally, we evaluate large language models (LLMs) for vulnerability detection using

SOTA prompting techniques. We fnd their performance is hindered by failures to localize and

understand individual statements, and logically arrive at a conclusion, and suggest directions for

improvement in these areas.

Finally, we introduce DeepVulGuard, an IDE-integrated tool based on DL models for

vulnerability detection and fxing. Through a real-world user study with professional developers,

we identify promising aspects of in-IDE DL integration, along with critical issues such as high

false-positive rates and non-applicable fxes that must be addressed for practical deployment.

1

CHAPTER 1. GENERAL INTRODUCTION

Static analysis has become a critical component of software developer workfows, intended to

facilitate rapid growth and development while preventing bugs and increasing security [1, 9, 11, 4].

Deep Learning models have demonstrated substantial improvements in performance on the task

of vulnerability detection, even outperforming static analyzers on open-source vulnerability

datasets [10, 8, 2]. This advent of high-performing models enables new applications for developers

to use these models as static analysis tools to detect vulnerabilities during development.

However, there is more to the usage of these models than performance metrics measured on

singular benchmarks. We must understand in which situations these models work, how they

perform in realistic scenarios, what their limitations are, and how to overcome these limitations.

In order to enable practical deployment, it’s also important to maintain their efciency so that

they can scale to widespread use, including use on consumer hardware. The key problem which we

study in this dissertation is: How can we utilize deep learning models to efectively detect security

vulnerabilities in the real world?

To this end, we empirically studied state-of-the-art deep learning models, including graph

neural networks, fne-tuned transformers, and large language models, on a wide variety of

datasets. We found that the models often failed because they lacked knowledge of vulnerability

semantics, as a result of training on purely textual data. Based on the fndings of our empirical

study, we designed approaches for integrating static and dynamic analysis into deep learning

models: DeepDFA and TRACED. We show that both approaches successfully improved model

performance, with DeepDFA showing greater generalization and efciency.

Beyond evaluations on ofine vulnerability datasets, deep learning models have not been

widely applied in software development. We deployed state-of-the-art detection and fxing models

2

in an IDE-integrated application and studied its usefulness with professional software developers

in real-world usage scenarios.

1.1 Contributions

This dissertation represents a step forward in understanding and improving the capabilities

and applicability of deep learning-based vulnerability detection models. We make the following

contributions:

Empirical study of deep learning models: At the time of writing, several papers have

proposed new deep learning models based on technical improvements to model architectures, most

notably fne-tuned Graph Neural Networks (GNNs) and fne-tuned transformer-based “Small”

Language Models (SLMs) and Large Language Models (LLMs). However, beyond comparing with

baseline models on benchmarks (which have several limitations, demonstrated in preceding and

contemporary studies [5, 3, 6]), little was understood about how the models would perform in

more realistic scenarios. We comprehensively evaluated fne-tuned SLMs in Chapter 2 and LLMs

in Chapter 5 in order to understand in which settings the state-of-the-art models performed best,

where they failed, and what could be done to improve them. Based on our results, we provided

concrete recommendations which directly drive model improvements in Chapters 3 and 4.

Integration of static and dynamic analysis with deep learning models: DeepDFA

(Chapter 3) represents the frst integration of static datafow analysis with deep learning models

for vulnerability detection. We show that integrating datafow analysis allowed DeepDFA to

perform more efectively and efciently than other state-of-the-art models, as well as generalize to

real-world vulnerabilities in a novel dataset. TRACED (Chapter 4) represents the frst application

of dynamic execution-aware fne-tuning to deep learning models for vulnerability detection. We

show that execution-awareness allowed TRACED to outperform other vulnerability detection and

code clone detection models, as well as identify execution-based information about source code

more accurately than prior pre-trained models which were trained only on static source code. The

3

integration of static and dynamic analysis techniques introduces a new paradigm for model

architectures, which allows models to make more precise and nuanced predictions.

User-facing implementation and user study: Beyond benchmark evaluations, the

instantiation and deployment of a deep learning-based user-facing tool presents many practical

challenges, such as delivering model predictions with low latency, presenting fxes in an actionable

way, and dealing with false positives. We implemented DeepVulGuard, which combined

state-of-the-art SLMs and LLMs to surface vulnerability detection alerts in an IDE, and leveraged

LLMs to suggest fxes for the vulnerabilities. We conducted an empirical user study, providing the

frst view of vulnerability detection + fxing models in a real-world setting, and report novel

fndings which refect on the models’ benefts, efective performance, and pain points. We show

that, although current deep learning models are not yet ready for deployment, they bear great

promise, and lay out concrete recommendations for further development of this technology for

real-world applications.

The majority of this dissertation is adapted from peer-reviewed work published in top-tier

software engineering conferences. Chapter 2 is based on a paper [13] published at the

International Conference on Software Engineering (ICSE 2023). Chapters 3 and 4 are based on

papers [12, 7] both published at the International Conference on Software Engineering (ICSE

2024). Chapter 5 is based on a paper submitted to the International Conference on Learning

Representations (ICLR 2025). Chapter 6 is based on a paper published at the International

Conference on Software Engineering (ICSE 2025).

1.2 Outline

The dissertation is organized as follows: Chapter 2 presents our empirical study, studying and

providing recommendations for DL model capabilities, training data, and model interpretation.

Chapter 3 introduces our proposed vulnerability detection model, DeepDFA, a GNN inspired by

datafow analysis. Chapter 4 introduces TRACED, our proposed method for execution-aware

4

language model pretraining. Chapter 5 presents our comprehensive empirical study of LLM

performance and reasoning errors for vulnerability detection. Chapter 6 presents our user study

on DeepVulGuard, an IDE-integrated deployment of DL-based vulnerability detection and fx

models. Chapter 7 concludes the dissertation.

1.3 Bibliography

[1] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,

C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later: using

static analysis to fnd bugs in the real world. Communications of the ACM 53, 2 (2010),

66–75.

[2] Cao, S., Sun, X., Bo, L., Wu, R., Li, B., and Tao, C. MVD: Memory-Related

Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks. arXiv:2203.02660

(Mar 2022). arXiv: 2203.02660.

[3] Chen, Y., Ding, Z., Alowain, L., Chen, X., and Wagner, D. DiverseVul: A new

vulnerable source code dataset for deep learning based vulnerability detection. In Proceedings

of the 26th International Symposium on Research in Attacks, Intrusions and Defenses (New

York, NY, USA, 2023), RAID ’23, Association for Computing Machinery, p. 654–668.

[4] Cook, B. Formal reasoning about the security of amazon web services. In Computer Aided

Verifcation: 30th International Conference (2018), CAV ’18, Springer, pp. 38–47.

[5] Croft, R., Babar, M. A., and Kholoosi, M. M. Data quality for software vulnerability

datasets. In Proceedings of the 45th International Conference on Software Engineering

(2023), ICSE ’23, IEEE Press, p. 121–133.

[6] Ding, Y., Fu, Y., Ibrahim, O., Sitawarin, C., Chen, X., Alomair, B.,

David Wagner, B. R., and Chen, Y. Vulnerability detection with code language models:

How far are we? In Proceedings of the 47th International Conference on Software

Engineering (2025), ICSE ’25.

5

[7] Ding, Y., Steenhoek, B., Pei, K., Kaiser, G., Le, W., and Ray, B. TRACED:

Execution-aware pre-training for source code. In Proceedings of the 46th IEEE/ACM

International Conference on Software Engineering (2024), ICSE ’24, pp. 1–12.

[8] Ding, Y., Suneja, S., Zheng, Y., Laredo, J., Morari, A., Kaiser, G., and Ray, B.

VELVET: a novel ensemble learning approach to automatically locate vulnerable statements.

In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (Los Alamitos, CA, USA, Mar 2022), SANER ’22, IEEE Computer

Society, pp. 959–970.

[9] Distefano, D., Fähndrich, M., Logozzo, F., and O’Hearn, P. W. Scaling static

analyses at facebook. Communications of the ACM 62, 8 (2019), 62–70.

[10] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong, Y.

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. In Proceedings of

the Network and Distributed System Security Symposium (2018), NDSS ’18, Internet Society.

[11] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., and Jaspan, C.

Lessons from building static analysis tools at Google. Communications of the ACM 61, 4

(2018), 58–66.

[12] Steenhoek, B., Gao, H., and Le, W. Datafow analysis-inspired deep learning for

efcient vulnerability detection. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

[13] Steenhoek, B., Rahman, M. M., Jiles, R., and Le, W. An empirical study of deep

learning models for vulnerability detection. In Proceedings of the 45th International

Conference on Software Engineering (2023), ICSE ’23, IEEE Press, p. 2237–2248.

6

CHAPTER 2. AN EMPIRICAL STUDY OF DEEP LEARNING MODELS

FOR VULNERABILITY DETECTION

Benjamin Steenhoek1 , Md Mahbubur Rahman2 , Richard Jiles3 , and Wei Le4

1-4 Department of Computer Science, Iowa State University, Ames, IA, 50011

Modifed from a manuscript published in the 45th International Conference on Software

Engineering (ICSE 2023)

Abstract

Deep learning (DL) models of code have recently reported great progress for vulnerability

detection. In some cases, DL-based models have outperformed static analysis tools. Although

many great models have been proposed, we do not yet have a good understanding of these models.

This limits the further advancement of model robustness, debugging, and deployment for the

vulnerability detection. In this chapter, we surveyed and reproduced 9 state-of-the-art (SOTA)

deep learning models on 2 widely used vulnerability detection datasets: Devign and MSR. We

investigated 6 research questions in three areas, namely model capabilities, training data, and

model interpretation. We experimentally demonstrated the variability between diferent runs of a

model and the low agreement among diferent models’ outputs. We investigated models trained

for specifc types of vulnerabilities compared to a model that is trained on all the vulnerabilities

at once. We explored the types of programs DL may consider “hard” to handle. We investigated

the relations of training data sizes and training data composition with model performance.

Finally, we studied model interpretations and analyzed important features that the models used

to make predictions. We believe that our fndings can help better understand model results,

provide guidance on preparing training data, and improve the robustness of the models. All of our

datasets, code, and results are available at https://doi.org/10.6084/m9.figshare.20791240.

https://doi.org/10.6084/m9.figshare.20791240

7

2.1 Introduction

Deep learning vulnerability detection tools have achieved promising results in recent years.

The state-of-the-art (SOTA) models reported 0.9 F1 score [14, 34] and outperformed static

analyzers [11, 5]. The results are exciting in that deep learning may bring in transformative

changes for software assurance. Thus, industry companies such as IBM, Google and Amazon are

very interested and have invested heavily to develop such tools and datasets [26, 31, 19, 45].

Although promising, deep learning vulnerability detection has not yet reached the level of

computer vision and natural language processing. Most of our research focuses on trying a new

emerging deep learning model and making it work for a dataset like the Devign or MSR

dataset [12, 46, 26]. However, we know little about the model itself, e.g., what type of programs

the model can/cannot handle well, whether we should build models for each vulnerability type or

we should build one model for all vulnerability types, what is a good training dataset, and what

information the model has used to make the decisions. Knowing the answers to these questions

can help us better develop, debug, and apply the models in practice. But considering the

black-box nature of deep learning, these questions are very hard to answer. This chapter does not

mean to provide a complete solution for these questions but is an exploration towards these goals.

In this chapter, we surveyed and reproduced a collection of SOTA deep learning vulnerability

detection models, and constructed research questions and studies to understand these models,

with the goal of distilling lessons and guidelines for better designing and debugging future models.

To the best of our knowledge, this is the frst paper that systematically investigated and

compared a variety of SOTA deep learning models. In the past, Chakraborty et al. [6] have

explored four existing models such as VulDeePecker [23], SySeVR [22] and Devign [46] and

pointed out that the models trained with synthetic data reported low accuracies on real-world

test set, and the models used spurious features like variable names to make the predictions.

We constructed our research questions and classifed them into three areas, namely model

capabilities, training data, and model interpretation. Specifcally, our frst goal is to understand

8

the capabilities of deep learning for handling vulnerability detection problems, especially

regarding the following research questions:

• RQ1 Do models agree on the vulnerability detection results? What are the variabilities

across diferent runs of a model and across diferent models?

• RQ2 Are certain types of vulnerabilities easier to detect? Should we build models for each

type of vulnerabilities or should we build one model that can detect all the vulnerabilities?

• RQ3 Are programs with certain code features harder to be predicted correctly by current

models, and if so, what are those code features?

Our second study focuses on training data. We aim to understand whether and how the

training data size and project composition can afect the model performance. Specifcally, we

constructed the following research questions:

• RQ4 Can increasing the dataset size help improve the model performance for vulnerability

detection?

• RQ5 How does the project composition in the training dataset afect the performance of

the models?

Finally, our third investigation area is model intepretation. We used SOTA model explanation

tools to investigate:

• RQ6 What source code information the models used for prediction? Do the models agree on

the important features?

To answer the research questions, we surveyed the SOTA deep learning models and

successfully reproduced 11 models on their original datasets (see Section 2.2). These models used

diferent deep learning architectures such as GNN, RNN, LSTM, CNN, and Transformers. To

compare the models, we managed to make 9 models work with the Devign and MSR, two popular

9

datasets. We selected the two datasets because (1) both of the datasets contain real-world

projects and vulnerabilities; (2) the majority of models are evaluated and tuned with the Devign

dataset in their papers; and (3) the MSR dataset contains 310 projects and its data have

annotations on vulnerability types, which are needed to study our RQs. We discovered the

fndings for our 6 RQs with carefully designed experiments (Section 2.3) and considerations of the

threats (Section 2.4). In summary, our research contributions include:

1. We conducted a comprehensive survey for the deep learning vulnerability detection models.

2. We delivered a reproduction package, consisting of the trained models and datasets for 11

SOTA deep learning frameworks with various study settings;

3. We designed 6 RQs to understand model capabilities, training data and model

interpretation;

4. We constructed the studies and experimentally obtained the results for the RQs; and

5. We prepared interesting examples and data for further studying model interpretability.

2.2 A Survey of Models and their Reproduction

To collect the SOTA deep learning models, we studied the papers from 2018 to 2022 and also

used Microsoft’s CodeXGLUE leaderboard 1 and IBM’s Defect detection D2A leaderboard 2 . We

worked with all the open-source models we can fnd, and successfully reproduced 11 models. The

complete list of models and the reasons we failed to reproduce some models are given in our data

replication package.

As shown in Table 2.1, the reproduced models cover a variety of deep learning architectures.

Devign [46] and ReVeal [6] used GNN on property graphs [46] that integrate control fow, data

dependencies and AST. ReGVD[29] used GNN on tokens. Code2Vec used multilayer perceptron

(MLP) on AST. VulDeeLocator [21] and SySeVR [22] are based the sequence models of RNN and

1https://microsoft.github.io/CodeXGLUE
2https://ibm.github.io/D2A

https://microsoft.github.io/CodeXGLUE
https://ibm.github.io/D2A

10

Table 2.1: 11 Reproduced Models.

Model Year Architecture Dataset

Devign [46] 2019
GNN,
property graph

Devign

ReVeal [6] 2021
GNN,
property graph

Devign, ReVeal

ReGVD [29] 2022 GNN, token Devign

CodeBERT [13] 2020 Transformer Devign

VulBERTa-CNN [15] 2021 Transformer, CNN
VulDeePecker,
Draper,
ReVeal

VulBERTa-MLP [15] 2021 Transformer, MLP
µVulDeePecker,

PLBART [2] 2021 Transformer Devign, D2ADevign
LineVul [14] 2022 Transformer MSR

Code2Vec [8] 2021 MLP, AST Devign

SeSyVR [22] 2018 RNN SARD, NVD
VulDeeLocator [21] 2020 Bi-LSTM SARD, NVD

Bi-LSTMs. Recent deep learning detection used pre-trained transformers, including

CodeBERT [13], VulBERTa-CNN [15], VulBERTa-MLP, PLBART [2] and LineVul [14]

For our RQs, we used the Devign [46] and MSR [12] datasets. We studied the datasets used in

these 11 models in their original papers, shown under Dataset in Table 2.1. We found that the

Devign dataset has been evaluated and tuned in 8 out of 11 models. It is a balanced dataset

consisting of roughly the same number of vulnerable and non-vulnerable examples, a total of

27,318 data points (each example is also called an data point). LineVul worked with the MSR

dataset, which is a more recently available dataset. It is an imbalanced dataset, consisting of 10,900

vulnerable examples and 177,736 non-vulnerable examples. These examples are labeled with their

source projects and their Common Weakness Enumeration entries (CWE), which indicates the

types of the vulnerabilities. We leverage such traits of the datasets for some of our RQs.

11

Table 2.2: Model reproduction on their original datasets. Reproduction results are reported as the
mean of 3 random seeds. ’-’ indicates that the results for a metric were not reported in their papers.
The numbers are in percentage.

Paper Results Our Reproduction

Model Acc Precision Recall F1 Acc’ Precision’ Recall’ F1’

Devign 59 54 63 57 56 50 71 59
ReVeal 63 57 75 64 53 48 71 56
ReGVD 63 - - - 62 62 46 52
CodeBERT 62 - - - 64 59 54 55
VulBERTa-CNN 64 - - - 64 60 59 59
VulBERTa-MLP 65 - - - 63 60 58 59
PLBART 63 - - - 62 58 59 59
LineVul - 97 86 91 99 96 88 92

Code2Vec 62 - - - 59 55 58 57

SeSyVR 98 90 92 90 94 88 84 86
VulDeeLocator 99 98 - 97 98 99 96 98

We reproduced the results for the models using their original datasets and settings, shown in

Table 2.2. The columns of A, P, R and F represents the commonly used metrics in deep learning

vulnerability detection, including accuracy, precision, recall and F1. Our reproduction results are

able to compute within 2% diference compared with the original papers in general. The

exceptions are ReVeal, for which the authors confrmed that our results fxed a data leakage error

in the original paper, and Devign, for which we used the third-party3 reproduction released by

Chakraborthy et al. [6], as the original Devign code is not open-sourced.

To enable the comparisons of the models, we improved the models’ implementations to

support both Devign and MSR datasets. When running experiments for the RQs, we excluded

VulDeeLocator and SeSyVR as they cannot be easily modifed for the Devign and MSR datasets.

As a result, we used the rest 9 models for our studies of the RQs.

3https://github.com/saikat107/Devign

https://github.com/saikat107/Devign

12

2.3 Research Questions and Findings

We organized the research questions into three areas, namely model capabilities, training data,

and model interpretation. See Sections 2.3.1 to 2.3.3 respectively. For each RQ, we present the

motivation, study setup and our fndings.

2.3.1 Capabilities of Deep Learning Models

RQ1 Do models agree on the vulnerability detection results? What are the variabilities across

diferent runs of a model and across diferent models?

Motivation: It is known that deep learning model performance can vary across training runs

when using diferent random seeds. In this RQ, we aim to measure for vulnerability detection,

how much such variability actually exists. Additionally, we want to discover how much agreement

exists across diferent deep learning models and across the models with similar architectures. We

hope our fndings can inform developers and researchers of the uncertainty which potentially

exists behind the numbers reported by such tools.

Study Setup: We trained the models using 3 diferent random seeds on the same

train/valid/test partitions of the Devign dataset. We used this dataset because almost all the

models tuned their hyperparameters on it. We measured the percentage of stable inputs—-an

input that has the same binary label for all 3 random seeds. We then compared the stable inputs

across the models to measure their agreement.

Findings: In Table 2.3, we reported the percentage of stable inputs for the entire dataset, under

Total stability, and for the test dataset, under Test stability. We also reported the variations of the

F1 score across 3 seeds (on test dataset) under σ Test F1.

Our results show that on average 34.9% test data (30.6% total data) reported diferent

predictions dependent on the seeds used in training. The GNN models that work on property

graph ranked the top 2 variability; especially for ReVeal, for 50% of the test data, its outputs

changed between runs. Code2Vec reported the least variability compared to the GNN and

transformer models. Interestingly, we found that unstable inputs are associated with more

13

Table 2.3: Variability over 3 random seeds on Devign dataset.

Model Total stability Test stability σ Test F1

ReVeal 55% 50% 2.73
Devign 57% 55% 2.24
VulBERTa-MLP 60% 58% 3.13
PLBART 72% 67% 1.03
LineVul 72% 67% 3.46
CodeBERT 72% 69% 2.78
VulBERTa-CNN 74% 71% 2.60
ReGVD 74% 72% 7.33
Code2Vec 89% 77% 0.78

incorrect predictions — stable inputs had a total of 19% incorrect predictions across all seeds and

unstable had 47%.

Although many examples reported diferent predictions between runs, we found that F1 test

scores did not change as much, and had a standard deviation of 2.9 on average. That said, for

most models, we expect 95% of performance measurements to be within a range of 5.8% above or

below the mean performance when measured on multiple random seeds.

Table 2.4: Agreement across diferent models.

Model Total agreement Test agreement

All 9 models 7% 7%
All 3 GNN models 25% 20%
Top 3 transformer models 44% 34%
All 5 transformer models 29% 22%

Table 2.4 shows that the deep learning models learned diverse classifers in that only 7% of

the test data (and 7% total data) are agreed by all the models. The 3 GNN models agreed on 20%

of test examples (and 25% total), whereas the 3 top performing transformers (LineVul, PLBART,

and VulBERTa-CNN) agreed on 34% test data (and 44% total). But when we compared all 5

transformer models, only 22% of test examples (and 29% total) are agreed. The low agreement

14

among diferent models implies that when there are no ground truth labels, a diferential testing

approach that compares across models as an oracle may have limited uses.

RQ2 Are certain types of vulnerabilities easier to detect? Should we build models for each type of

vulnerabilities or should we build one model that can detect all vulnerabilities?

Motivation: In traditional software assurance techniques such as program analysis, we use

diferent algorithms to detect diferent vulnerabilities. Certain types, e.g., infnite loops, are more

difcult to detect than other types, e.g., memory leaks, because one requires to track symbolic

values and reasoning about the loops, and the other only needs to check if the memory free is

invoked after its allocation. In this RQ, we are interested to learn whether for deep learning

vulnerability detectors, it is also true that certain types of vulnerabilities are easier to detect than

the others. Considering diferent types of vulnerabilities have diferent semantics and root causes,

we also want to gain some insights as to whether we should build a model for each type of

vulnerability or for vulnerability in general (without separating them into the types), like most

current work has done.

Table 2.5: Five types of vulnerabilities.

Vulnerability Type Total CWE examples

Bufer overfow 37,291 CWE-125, CWE-787
Value error 15,126 CWE-190, CWE-369
Resource error 33,748 CWE-415, CWE-404
Input validation error 25,514 CWE-134, CWE-89
Privilege escalation 32,749 CWE-264, CWE-255

Study Setup: Here, we study models based on the vulnerability types, and thus we used the

MSR dataset. The examples in the MSR dataset are annotated with CWE 4 . Using these CWE

types, we group the vulnerabilities into 5 categories, namely bufer overfow, value error, resource

error, input validation error, and privilege escalation, shown under Vulnerability Types in

Table 2.5. Our criteria are that (1) each group contains the bugs of similar root causes and

4https://cwe.mitre.org

https://cwe.mitre.org

15

semantics, and (2) each group has a sufciently large dataset for efectively training the models.

Column Total lists the number of the examples collected from the MSR datasets, including all

vulnerable and their patched examples that have a CWE annotation.

Specifcally, bufer overfow is caused by reading or writing to the memory outside the bounds

of the bufer, e.g, CWE-125 “Out-of-bounds Read” and CWE-787 “Out-of-bounds Write”. The

mapping of the complete CWE list to the 5 groups is given in our dataset. Value error includes

the examples of CWE-190 “Integer Overfow”, CWE-369 “Divide By Zero” and CWE-682

“Incorrect calculation”. Such errors are caused by propagating incorrect values through data

processing or arithmetic operations. Resource error is caused by incorrectly freeing or using a

resource such as memory or a fle pointer, and are typically detected using typestate analysis [35].

The CWE examples include CWE-415 “Double Free” and CWE-404 “Improper Resource

Shutdown”. Input validation error is caused by using an external input without validating

whether it is correct/benign, e.g., CWE-134 “Use of Externally-Controlled Format String” and

CWE-89 “Improper Neutralization of Special Elements used in an SQL Command” (‘SQL

Injection’). They are often detected using taint analysis [39]. Finally, Privilege escalation is caused

by missing proper permission checks and allowing an unauthorized entity to execute privileged

commands or view privileged data, such as CWE-264: “Permissions, Privileges, and Access

Controls”, and CWE-255: “Credentials Management Errors”.

We partitioned the dataset for each bug type into train, valid, and test datasets with

80%/10%/10% ratios. We trained 5 models using the 5 groups of bugs respectively, as well as a

Combined Model trained with all the bug types for comparison. This refects the real-world

scenarios in that a model trained with specifc vulnerability type may be more focused, but the

combined model can train with more data. We report the same-bugtype performance and

cross-bugtype performances for each model. The same-bugtype performance reports the test F1

score when the training and test data have the same bug type. The cross-bugtype performances

report the test F1 scores when the training and test data have diferent bug types.

16

Devign ReVeal ReGVD CodeBert PLBART LineVul Code2Vec
Model

0

20

40

60

80

100

F 1
 o

n
te

st
 d

at
as

et Bug type
All bug types
Buffer overflow
Input validation error
Privilege escalation
Resource error
Value error

Figure 2.1: Same-bugtype and cross-bugtype performance. Bars indicates same-bugtype perfor-
mance; circles indicate cross-bugtype performance for each other bugtype.

In this experiment, VulBERTa-CNN, VulBERTa-MLP and some models for Code2Vec did not

report valid results because they always predicted the same class on the test data.

Findings: We present out results in Figure 2.1. The bars report the F1 score for the

same-bugtype setting, and the circles report the cross-bugtype performances. Each bug type is

associated with 4 cross-bugtype test sets, and thus we have four circles for each bar, except that

the combined model has fve circles, each of which represents running tests for a bug type on the

combined models.

Analyzing same-bugtype performance, we found that the models did not always agree on

which type of vulnerability is the easiest, and diferent types of vulnerabilities have achieved the

best F1 score in diferent models. Interestingly, Input validation and Resource errors (the orange

and red bars) often reported lower performance than the other types. On the contrary, Bufer

overfows and Value errors (the blue and purple bars) often reported better performance

compared to other types. In traditional program analysis, these types are harder to detect

because they require tracking variable values, and sometimes reasoning about loops.

Devign and ReVeal used GNN architectures on the property graphs. Their bars show the

similarities. For the rest of the models, resource errors (the red bars) manifest the lowest

performance among the 5 vulnerability types. One possibility is that resource allocation and free

17

can be located far apart in the code, and the transformer models cannot capture such long range

dependencies. Another possibility is that such errors cover a variety of resources, and the training

dataset may not contain sufcient data for each resource for the model to extract the patterns.

The combined model (the brown bar) is generally less performant compared to the models

trained with a specifc type of vulnerability, but for some vulnerability types like Input validation

and Resource errors, the combined model can perform better. For example, for CodeBERT, the

combined model achieved higher F1 compared to all of the other 5 models. The circles inside the

brown bar show that Privilege escalation and Resource errors reported relatively low accuracy,

but for all of the vulnerability types, the combined model reported better performance compared

to the type specifc models.

Analyzing cross-bugtype performance, we found that for the most of time, cross-bugtype

detection reports much lower performance except LineVul, implying that diferent vulnerability

types represent diferent data distributions. LineVul seems to handle value errors very well. When

applying models trained with other vulnerabilities, value errors reported higher performance than

the same-bug performance.

RQ3 Are programs with certain code features harder to be predicted correctly by the current

vulnerability detection models, and if so, what are those code features?

Motivation: Here, we investigated whether we can characterize the programs that cannot be

predicted well and are “hard” to deep learning models, and whether diferent models agree on such

difculties. Knowing what programs we cannot handle gives a good target for our future work to

improve upon. In program analysis, we know that certain features are hard to handle, such as

loops and pointers. We want to know whether these features are also hard for deep learning.

Study Setup: In the frst step, we prepared a list of code features for investigation. We think it

is interesting to compare with program analysis tools regarding what types of programs are hard

to handle. So our approach is to list code features that are important to program analysis, and

then check if they also made a diference for deep learning tools.

18

We obtained a total of 12 code features. Some are control fow related, e.g., the structures of

while, for, if, goto, call and switch as well as unconditional jumps of break, continue, return; some

are data structure and pointer related, e.g., arrays and pointers (including the feld accesses); and

fnally some are auxiliary structures such as comment and macro. Based on this feature list, we

applied the tree-sitter 5 parser to count the frequency of code features present in each function.

To understand whether certain code features make deep learning models harder to predict, we

used a multivariate logistic regression (LR) model (see Eq. 1) to associate the code features with

the likeliness of a function being predicted correctly. If a function with certain code features is

more likely predicted correctly, we consider it as easier to deep learning, and vice versa. Given a

function with a particular feature composition, Y in Eq. 1 reports the predicted probability that

the deep learning model will predict it correctly. xi is the count of each code feature in the

function. βis are the coefcients learned from the data. Each βi is associated with one code feature

xi. When βi is negative, the value βi ∗ xi decreases the predicted probability of correctness, so we

term these features to be difcult for the model. Likewise, code features with positive coefcients

are termed to be easy. Meanwhile, a large βi implies that the increase in the count of code feature

xi greatly increases the predicted probability of correct prediction, and vice versa.

X
Y = σ(βi ∗ xi + β0) (2.1)

i

We trained the LR model on the predictions made on the validation set, and then used the

trained LR model to fnd difcult/easy examples from the test set. To quantify the difculty of an

example in test set, we used the logit input to the sigmoid function in the LR model: X
ℓ(x) = βi ∗ xi. We denote the negation of this quantity as the difculty score. A function with

i
a higher difculty score is expected to be more likely predicted incorrectly than a function with a

lower difculty score. To evaluate the efectiveness of this LR model, we selected the top and

bottom 10% of examples in the test set, sorted by their difculty scores. We then evaluate the

5https://tree-sitter.github.io/tree-sitter/

https://tree-sitter.github.io/tree-sitter/

19

Dev
ign

Re
Ve

al

Re
GVD

Cod
eB

ER
T

Vu
lBER

Ta-
CNN

Vu
lBER

Ta-
MLP

PLB
ART

Lin
eV

ul

Cod
e2

Ve
c

Model

0

20

40

60
F 1

 sc
or

e

Evaluation dataset
difficult original easy

Figure 2.2: Comparative performance on evaluation sets selected according to LR model difculty
score, averaged over 3 random seeds on the Devign dataset. “Original” is the performance on the
original test set, reported in Table 2.2.

predictions of our LR model by comparing the model performance on the easy and difcult

datasets we selected.

It should be noted that initially we have tried statistical signifcance tests and

correlation-based methods to link code features with the model accuracy. Then, we realized that

these approaches consider only one feature a time. For example, the functions with 3 loops, 400

pointers, and 500 macros perform well, while those with 300 loops, 300 pointers and 100 macros

perform bad. We cannot conclude whether the performance diference is due to the loops, pointers

or macros. On the other hand, the LR model incorporates multiple code features at once and

considers the efect of combinations of the features.

Findings: Figure 2.2 shows that all 9 models performed better on the easy dataset than on the

difcult set. The average diference between easy/difcult performance was 10.3% for all models.

For the majority of models (7 out of 9), the original test set performance lies between the

performances of difcult and easy sets. These results demonstrate that the LR model and

difculty score are efective for choosing difcult and easy examples for the deep learning models.

20

arrays call comment for goto if jump length macro pointer switch while
Code feature

0.100

0.075

0.050

0.025

0.000

0.025

0.050

0.075

0.100

Co
ef

fic
ie

nt
 v

al
ue

 = -0.33
 = -0.14

ea
sy

 d

iff
icu

lt
Devign
ReVeal
ReGVD

CodeBERT
VulBERTa-CNN
VulBERTa-MLP

PLBART
LineVul
Code2Vec

Figure 2.3: Coefcients of LR models trained on the stable examples from the Devign dataset.

Figure 2.3 plots the coefcients of each code feature in the LR model trained for each deep

learning model. We found that the dots for the features call, length, and pointers are grouped

together for all the models, implying that all the models agreed on the importance of these

features. Interestingly, all of these dots are located near 0, which indicates that the features did

not have a large efect. On the other hand, the features for, goto, if, jump, switch, and while

varied the across models. These are all control fow related structures.

We also observed that for all the models, arrays and switch are associated with the positive

coefcients, and that for the majority of models, if, goto, and while fall into the negative

ranges. In particular, if had a negative coefcient for all the models. The high number of if,

goto, and while in a program indicates its high cyclomatic complexity [28], and this type of

program is also challenging for program analysis. Especially, property graph-based models like

Devign use control fow information, so it makes sense that features for, goto, jump and while

were all negative (hard).

21

2.3.2 The Training Data

RQ4 Can increasing the dataset size help improve the model performance for vulnerability

detection?

Motivation: High-quality vulnerability detection data are hard to obtain. In the past, we used

automatic labeling methods such as static analysis and mining change commits. These approaches

can introduce incorrect labels [6]. We also used manual labels [46], which are slow to produce [24].

This research question helps us understand whether currently available datasets are large enough

to train the models, and whether increasing the dataset size can signifcantly improve the model

performance.

Study Setup: To investigate this RQ, we combined the Devign and MSR datasets, namely,

Imbalanced-dataset. Since the projects used in Devign overlap with the projects used in MSR, we

excluded 82 duplicated examples where the commit IDs are matched. This generates a dataset of

194,285 examples in total. Some of the published models are originally tuned on the balanced

model such as Devign, so we also constructed a Balanced-dataset of 45,363 examples by taking all

the vulnerable examples in MSR and then randomly undersampling an equal number of

non-vulnerable examples. For each dataset, we held out 10% data as the test set for all the

models. Then we prepared 10%, 20% ... 90%, 100% of the rest of the data to train 10 models to

observe how the F1 score for test set changes when the dataset size increases. In addition, we

prepared two small datasets of 1% and 5% of the total data to experiment what is the minimum

amount of the data needed for the model being able to learning something.

Findings: We summarized our results in Figure 2.4. Figures 2.4a and 2.4b show a similar trend.

Generally, all the models increased in performance when we added more data. However, the

improvement was not signifcant. Comparing 100% data with 10%, the F1 on test set reported no

diference when we take an average over all the models for the Balanced dataset. For the

Imbalanced dataset, the value of F1 score improved 0.16 on average.

In Figure 2.4a, among the models, only LineVul showed consistent improvement when we

added 10% more data each time. All other models fuctuated when we increased the training

22

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Portion of Balanced-dataset

0

20

40

60

80

100

F 1
 o

n
he

ld
-o

ut
 te

st
 se

t

Devign
ReVeal
ReGVD

CodeBert
VulBERTa-MLP
PLBART

LineVul
Code2Vec

(a) Results on Balanced-dataset. 100% dataset size =
45,363.

1% 5% 10
%

20
%

30
%

40
%

50
%

60
%

70
%

80
%

90
%

10
0%

Portion of Imbalanced-dataset

0

20

40

60

80

100

F 1
 o

n
he

ld
-o

ut
 te

st
 se

t

Devign
ReVeal
ReGVD

CodeBert
PLBART

LineVul
Code2Vec

(b) Results on Imbalanced-dataset. 100% dataset size =
194,285.

Figure 2.4: F1 score on a held-out test set when models are trained with increased portions of the
training dataset.

dataset, which indicates that the increasing data does not always bring beneft. For example, for

VulBERTa-MLP, the F1 value drops an average 0.1 over the course of increasing the dataset sizes.

The performance of the model trained with 100% of the dataset is 0.08 less than the performance

of the model trained with 10% of the dataset. It seems that other factors rather than the dataset

size has played a much signifcant role in terms of performance. In Figure 2.4b, ReVeal is the

model that improves the most with the increased dataset. At 100% dataset, ReVeal is catching up

the best model LineVul. However, Devign, which has a similar architecture of using GNN on the

property graph, does not show this beneft of additional data.

The experiments on models with the small datasets (consisting of 1% and 5% total data)

showed that surprisingly, we can bring the models up to good performance only using 5% (about

2268 data points and 1134 vulnerable examples) for most of the models except CodeBERT, when

learning with the balanced data. When learning with the imbalanced data, the turning point

comes a little later. For example, ReGVD and CodeBERT require 50% (96.4 k) and 30% (57.8 k)

of the total data. The other models need about 5–10% of the data (9.7–19.4 k) to reach a high

point. Interestingly, this dataset has 10.8% vulnerable examples; that said, the models needed

23

about 1048-2095 vulnerable examples to achieve good performance—a comparable amount of

vulnerable examples to the setting of the Balanced dataset.

RQ5 How does the project composition in the training dataset afect the performance of

vulnerability detection models?

Motivation: In this RQ, we aim to further understand how to compose a good training dataset

for vulnerability detection. Specifcally, we are interested to know whether the diversity of the

projects in the training dataset helps. We are also interested to learn whether diferent projects

indeed represent diferent distributions such that when the test and training data come from the

same projects, the model can signifcantly perform better, and when the training and test data

are from diferent projects, whether the models can generalize over unseen projects.

Study Setup: We designed two experiments for this study. In the frst experiment, we prepared

a non-diverse training dataset and a diverse training dataset, and compared the models trained

with the two datasets on the same test set. In the MSR dataset, we found that Chrome contains

76k examples and is the largest among all the 310 projects. We used it as the non-diverse dataset.

We performed this experiment in a 5-fold cross validation setting to eliminate the potential biases

that may exist when selecting projects. For each fold, we randomly sampled 10 k examples from

the MSR dataset as a test set. We then excluded Chrome and the projects used in the test set,

and randomly sampled a total of 76 k examples (the same number as Chrome has) from the

remaining projects. The average number of projects in the diverse dataset is 50.6 across 5 folds.

In the second experiment, we prepared a mixed-projects setting where the test set is separated

from the training set without considering the source project, and some examples in the training

and test sets may originate from the same projects. This is the setting where most of our deep

learning papers are evaluated with. We also constructed a cross-projects setting where the test set

examples must originate from diferent projects than the projects represented the training set.

This setting helps us understand whether we will have a signifcant performance degradation

when using an of-the-shelf trained deep learning vulnerability detection models that have not

seen the test projects.

24

We also used the MSR dataset in a 5-fold cross validation setting. For each fold, we frst

constructed a test set for the cross-project setting by including all the examples from randomly

chosen projects, until the set contained at least 10k examples. Because each project had a

diferent number of examples, the resulting set was slightly larger than 10k examples. We then

constructed a test set for the mixed-project setting by randomly partitioning the remaining

examples into test (10 k), validation (10 k), and training (the remaining examples, about 158 k)

sets. We trained the model, using the 158 k training examples and 10 k validation set, then ran it

on the test sets for both the cross-project setting and the mixed-project setting.

Devign ReVeal ReGVD PLBART LineVul CodeBERT
Training dataset

0

20

40

60

80

100

F 1
 o

n
he

ld
-o

ut
 se

t

Dataset
Diverse
Nondiverse

Devign ReVeal ReGVD PLBART LineVul CodeBERT
Training dataset

0

20

40

60

80

100

F 1
 o

n
he

ld
-o

ut
 se

t

Dataset
Mixed project
Cross project

(a) Diverse vs. non-diverse performance (b) Mixed-project vs. cross-project performance

Figure 2.5: Studies on project composition in training data. The bar shows mean F1 and the interval
shows standard deviation.

Findings: The results for the frst experiment are presented in Figure 2.5. We used the boxplot

to summarize the results of 5-fold cross-validation. To our surprise, we found that for all the

models, the diverse training set does not provide any benefts compared to the training set that

only consists of Chrome. In fact, 5 out of 6 models reported a higher median performance when

trained on non-diverse data than on diverse data.

For the second experiment, Figure 2.5b shows that mixed projects perform signifcantly better

than cross projects for all the models (the average and the largest diferences in F1 score were

0.11 and 0.32 respectively). This implies that seeing the data from one project can indeed help

25

predict other data from the same project. Vulnerability detection can greatly beneft from

customized trained models compared to directly used already trained of-the-shelf models. For

LineVul, the 5 folds reported very diferent performances in the cross-project setting, indicating

that given a target test set, some projects are more useful for training than others. The results

also imply that the models may learn to detect vulnerabilities from project-specifc attributes of

the dataset, such as style, language features or naming conventions. We believe that this

motivates further research into causal detection of bugs for generalization.

2.3.3 Internals of Deep Learning

RQ6 What code information do the models use for prediction? Do the models agree on the

important features?

Motivation: Recent deep learning vulnerability detectors have achieved high performance, e.g.,

LineVul reported 91% F1 score. We want to know why these tools can perform well, and whether

the model has used any aspects of semantics of the vulnerability to make decisions. For example,

to detect bufer overfows, a semantic-based program analysis tool identifes the dependent

statements and reasons about the string lengths and bufer sizes. We also want to investigate

whether diferent models agree on what are the important features.

Study Setup: We surveyed a set of SOTA deep learning interpretation tools, especially for GNN

and transformer architectures. We used GNNExplainer [43] for Devign and ReGVD, and

LIT [38, 36, 32] for LineVul, VulBERTa-CNN, VulBERTa-MLP, CodeBert and PLBART, as

among all the tools we investigated, these two tools can work with the most for our models. In

our data reproduction package, we documented the reasons why the rest of the models cannot

work with GNNExplainer and LIT, as well as the other intepretability tools we have tried.

To explain the models, both of GNNExplainer and LIT provide scores to measure the

importance of the code features. GNNExplainer gives a score for each edge in the graph, and LIT

gives a score for each token in the program. To compare the results reported by GNNExplainer

and LIT, we performed the following normalization on the output of the tools. For

26

GNNExplainer, we calculated the score of each node by taking the average scores of all of its

incident edges, as what has been done in [20]. Each token in the node will use this score. For both

GNNExplainer and LIT, we calculated the score for each source code line by summing up the

scores for all the tokens of that line, following the literature [14]. For each example in the test

dataset, we selected the top 10 highest scored lines, as done in [20, 14], to form the important

feature set, denoted as I. We considered these 10 lines as the most important code features the

model used to make a decision.

To measure the similarity of the two important feature sets IA and IB reported by the models

A and B, we calculated the intersection IAB = IA ∩ IB. We also used Jaccard index [18] as another

metric, defned as:

|IA ∩ IB |
J(IA, IB) = (2.2)

|IA ∪ IB |

To report the similarity, we frst compute IAB and J(IA, IB) for each program in the test set, and

then we took the average for IAB and J(IA, IB) respectively.

We sampled examples from the following groups for manual inspection: 1) the example is

vulnerable, and the model correctly detected it (correct); 2) the example is non-vulnerable, and

the model predicted as vulnerable (false positive); and 3) the example is vulnerable, and the

model predicted as non-vulnerable (false negative).

Table 2.6: The similarity of important feature sets between every two models, measured by IAB

(reported in blue) and J(IA, IB) (in black). Max and min values are bold.

Model LineVul CodeBERT PLBART Devign ReGVD VulCNN VulMLP

LineVul - 0.58 0.31 0.38 0.60 0.32 0.40
CodeBERT 6.84 - 0.37 0.35 0.50 0.31 0.40
PLBART 4.08 4.89 - 0.24 0.27 0.30 0.28
Devign
ReGVD

4.90
6.88

4.54
5.86

3.38
3.58

-

5.36
0.42
-

0.27
0.33

0.30
0.40

VulCNN 4.20 4.06 3.88 3.87 4.35 - 0.30
VulMLP 4.83 4.74 3.71 3.95 4.83 3.97 -

27

Findings: In Table 2.6, we reported the similarity of the important feature sets from every model

pair. Our results show that Linevul and ReGVD have a maximum overlap among all the model

pairs. Among the 10 lines ranked as the important features, the two models shared an average of

6.88 lines. We found it interesting that although the models can have a lot of disagreement on

individual predictions (See Table IV), the code information they used overlap. All the model pairs

have at least 3 lines in common for the important features. Devign, as the only GNN model based

on the property graph, has a low overlap with the other models and the lowest is with PLBART,

on average 3.38 lines. PLBART used a diferent transformer architecture compared to the other

transformer model, and also reported low overlaps with other transformer models.

We have also analyzed the corrected predicted examples using the same approach as

Table 2.6. We found that the important feature sets have more overlaps for the corrected

examples, e.g., Linevul and ReGVD still have the most in common, sharing 7.29 lines in the

important feature sets.

Table 2.7: The frequently highlighted code features.

Model error print alloc for memset memcpy while if

LineVul
CodeBERT
PLBART
Devign
ReGVD
VulCNN
VulMLP

.035

.027

.025

.023

.034

.024

.031

.021

.015

.012

.012

.027

.014

.018

.017

.015

.011

.014

.022

.011

.015

.042

.032

.034

.069

.038

.028

.020

.003

.004

.003

.002

.004

.002

.003

.003

.002

.001

.002

.005

.002

.003

.005

.004

.005

.007

.005

.004

.004

.115

.111

.114

.147

.132

.116

.095

Func .010 .010 .010 .026 .002 .002 .004 .108

I/F 2.79 1.78 1.52 1.47 1.39 1.21 1.12 1.10

From our manual inspection, we observed that the models commonly highlighted code lines of

for, if, and while, as well as the function signatures as important features. The models also

often highlighted memory operations of alloc, memset, and memcpy, as well as the lines which

print error messages containing error or printf. To confrm this observation, we performed

28

profling on the code using these keywords and reported the results in Table 2.7. Using error as

an example, without loss of generality, the frst 7 rows report the probability of error occurring

in the important feature set for each model (total number of error in the important feature

set/total number of lines in the important feature set). In Row Func, we show the probability of

error occurring in a function (total number of error/total number of lines in a function).

Comparing the two, we show that the probability of error occurring in the important feature sets

is 2.79 times of the probability of error occurring in the program on average, shown in Row I/F.

This implies that error is preferred to be selected into the important feature sets. Among all the

features, error, print, and alloc ranked the highest ratios.

Our second observation is that the transformer models sometimes made predictions without

seeing the root cause. This is because the transformer models take a fxed-size input, and some

code, sometimes including the root cause, is truncated. Interestingly, those models are still able to

correctly predict whether a function is vulnerable with high F1 score.

Third, we inspected the vulnerabilities that all the models missed and studied the important

feature sets used to detect such vulnerabilities. We found that these vulnerabilities are very

application specifc. The bugs are missed may because there are not sufcient training data for

such types of bugs.

In Listing 1, we show an example where the prediction is correct, but the features used are not

causal. The example contains a memory leak vulnerability, and LineVul predicted the example as

vulnerable. The memory allocated to name at line 14 is never released. The patch at line 23 showed

a fx. The important feature set (top-10 lines) reported by LIT are highlighted in yellow. We can

see that it includes the “patterns” we have discussed, including function signature at line 1, the

lines that contain ERROR, e.g., lines 13 and 16, as well as the if statement at line 21. We also see

that for this project, variable name len is important and included multiple times. However, none

of the 10 lines cover the memory allocation at line 14, which is important to understand this bug.

This example indicates that the models try to capture patterns of a vulnerability, instead of

reasoning about the values, and have difculty capturing long range semantic dependencies in the

5

10

15

20

25

29

1 static int asf_read_ext_content(AVFormatContext *s, const GUIDParseTable *g) // (3)
2 {
3 ASFContext *asf = s->priv_data;
4 AVIOContext *pb = s->pb;

uint64 t size = avio rl64(pb); //(7)
6 uint16 t nb desc = avio rl16(pb); //(8)
7 int i, ret;
8 for (i = 0; i < nb_desc; i++) {
9 uint16 t name len, type, val len; //(5)

uint8_t *name = NULL;
11 name_len = avio_rl16(pb);
12 if (!name_len)
13 return AVERROR INVALIDDATA; //(6)
14 name = av_malloc(name_len);

if (!name)
16 return AVERROR(ENOMEM); //(9)
17 avio get str16le(pb, name len, name, //(4)
18 name len); //(2)
19 type = avio rl16(pb); //(10)

val_len = avio_rl16(pb);
21 if ((ret = process metadata(s, name, name len, val len, type, &s->metadata)) < 0) //(1)
22 ret = process metadata(s, name, name len, val len, type, &s->metadata);
23 av freep(&name);
24 if (ret < 0)

return ret;
26 }
27 }

Listing 1: Memory leak successfully detected by LineVul. The top-10 lines reported by LIT are
highlighted in yellow.

30

1 static int decode_frame(AVCodecContext *avctx,
2 void *data, int *got frame, AVPacket *avpkt) // (1)
3 {
4 //...10 lines
5 bytestream2 init(&s->gb, avpkt->data, avpkt->size); // (5)
6 if ((ret = ff tdecode header(&s->gb, &le, &off))) { // (6)
7 av_log(avctx, AV_LOG_ERROR, "Invalid TIFF header\n"); // (3)
8 return ret;
9 } else if (off >= UINT MAX - 14 || avpkt->size < off + 14) { // (4)

10 av_log(avctx, AV_LOG_ERROR, "IFD offset is greater than image size\n"); // (2)
11 return AVERROR_INVALIDDATA;
12 }
13 s->le = le;
14 // TIFF BPP is not a required tag and defaults to 1 // (10)
15 s->bppcount = s->bpp = 1; // (9)
16 s->photometric = TIFF PHOTOMETRIC NONE; // (7)
17 s->compr = TIFF RAW; // (8)
18 // ...140 lines

Listing 2: Non-vulnerable code is predicted as vulnerable because of spurious features.

code. But we also observed in other examples that sometimes, the control structures and memory

statements highlighted as important (see Table VII) can be a part of the dependent statements of

the vulnerability, and thus they are useful for inspecting the root cause of the bugs.

Listing 2 shows an example of a non-vulnerable function which LineVul erroneously predicted

as vulnerable. The model highlighted the function signature (line 2), lines with “ERROR” (lines 7

and 10), initialization routines (line 5), if (lines 6 and 9), and feld assignments (lines 15-17), and

predicted the function as vulnerable. It showed that making decisions based on the patterns of

these structures can lead to mistakes.

2.4 Threats to Validity

Our observations are drawn from the models and data sets available and may not be

generalized for deep learning vulnerability detection in general. We used both a balanced dataset

(Devign) and an imbalanced dataset (MSR) to mitigate this threat. The two datasets both

included real-world bugs. Devign is used by most of the models in their evaluation, so we need it

to reproduce the models (see Table 2.1). However, our datasets may still not be representative of

31

the real-world vulnerability distribution. We included all the models that we could fnd and

reproduce.

The grouping in RQ2 is subject to bias in that diferent researchers may divide vulnerability

types diferently. Here, two of the authors who have the domain knowledge inspected the CWE

list individually and discussed and agreed on the grouping. To mitigate the bias that may be

brought in by the specifc project compositions, RQ5 performed 5-fold cross-validation. For RQ6,

we selected the SOTA model interpretation tools; however, such techniques may not be perfect to

identify the important features that the models use. The experiments for RQ2, RQ4 and RQ5

require the models to work with our customized data that are not shipped with the models. We

tried diferent random seeds for any suspicious data we have observed, e.g., when a model reported

all 0s or 1s. We excluded such models in our results when tuning could not resolve the issues.

2.5 Related Work

Several works have done empirical studies of machine learning based vulnerability detection

models. Chakraborthy et al. [6] studied 4 DL models, and investigated the issues of synthetic

datasets, data duplication and data imbalance, and pointed out the use of spurious features, then

used these to improve their model design. Tang et al. [37] aim to determine which neural network

architectures, vector representation methods, symbolization methods are the best. They surveyed

2 models. Mazuera-Rozo et al. [27] evaluated 1 shallow and 2 deep models on binary classifcation

and bug type (non-binary) classifcation. After we completed our study, we found two related

empirical studies. Lin et al. [25] evaluated 6 DL models’ generalization for 9 software projects. Ban

et al. [3] evaluated 6 machine learning models (1 of which is a neural network) in a cross-project

setting with 3 software projects, and also studied training on 2 bug types vs. a single bug type.

Recently, many vulnerability detection models are proposed with a variety of architectures,

such as MLP [8], RNN [23, 22, 21, 44], CNN [33, 41], Transformer [13, 30, 40, 10, 14, 2, 11, 15],

and GNN [7, 9, 4, 20, 34, 5, 42, 17, 46, 6, 29, 16]. For example, Devign used gated graph neural

network on property graphs [1]. LineVul [14] used a transformer model pretrained over a large

32

body of diverse open-source projects. ReVeal [6] applied SMOTE to address the data imbalance

issue and triplet loss to learn to maximally separate vulnerable and non-vulnerable code.

In these papers, most models were evaluated on in-distribution data, where the training set

can contain projects and bug types which overlap with the test set. Russell et al. [33], Li et al.

[23], and Xu et al. [42] trained their models to detect specifc kinds of vulnerabilities, and all found

that some vulnerabilities were more difcult than others. Hin et al. [17] evaluated their model in a

cross-project setting by holding out one project at a time and found that the performance was

slightly degraded. Most model evaluations compared diferent baselines on metrics such as F1, but

did not quantify the agreement on the predictions. To the best of our knowledge, our work is the

frst attempt to characterize the programs and code features which the model cannot predict well.

2.6 Conclusions and Future Work

To understand deep learning vulnerability detection models, we performed an empirical study

with 6 research questions. We experimentally show that on average, 34.9% test data have diferent

predictions between runs, and only 7% of predictions are agreed across 9 models. Vulnerability

detection based on a specifc type generally performs better than a model built for all

vulnerabilities. The model performance does not increase signifcantly with an increased dataset,

and for both balanced and imbalanced datasets, the models start performing well using around 1k

vulnerable examples. We developed a logistic regression model that can fnd programs that are

difcult for the model to predict correctly. The explanation tools showed that the models used

common features to make predictions, ranging from 3.38-6.88 lines in common per top 10

important lines. We report the code patterns that the models frequently highlighted as important

features. In the future work, we plan to further investigate these patterns.

2.7 Acknowledgements

We thank the anonymous reviewers for their valuable feedback. We thank Hongyang Gao for

providing computing resources for our experiments. We thank Qi Li for discussing an experiment

https://3.38-6.88

33

metric. This research is partially supported by the U.S. National Science Foundation (NSF) under

Award #1816352.

2.8 Bibliography

[1] Joern. https://github.com/octopus-platform/joern.

[2] Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-W. Unifed pre-training for

program understanding and generation. In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies (Online, June 2021), K. Toutanova, A. Rumshisky, L. Zettlemoyer,

D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.,

Association for Computational Linguistics, pp. 2655–2668.

[3] Ban, X., Liu, S., Chen, C., and Chua, C. A performance evaluation of deep-learnt

features for software vulnerability detection. Concurrency and Computation: Practice and

Experience 31, 19 (2019), e5103. e5103 cpe.5103.

[4] Cao, S., Sun, X., Bo, L., Wei, Y., and Li, B. BGNN4VD: Constructing bidirectional

graph neural-network for vulnerability detection. Information and Software Technology 136,

C (Aug. 2021).

[5] Cao, S., Sun, X., Bo, L., Wu, R., Li, B., and Tao, C. MVD: Memory-Related

Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks. arXiv:2203.02660

(Mar 2022). arXiv: 2203.02660.

[6] Chakraborty, S., Krishna, R., Ding, Y., and Ray, B. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering 48,

09 (Sept. 2022), 3280–3296.

https://github.com/octopus-platform/joern

34

[7] Cheng, X., Wang, H., Hua, J., Xu, G., and Sui, Y. DeepWukong: Statically detecting

software vulnerabilities using deep graph neural network. ACM Transactions on Software

Engineering Methodology 30, 3 (Apr 2021), 38:1–38:33.

[8] Coimbra, D., Reis, S., Abreu, R., P˘ areanu, C., and Erdogmus, H. On usingas˘

distributed representations of source code for the detection of c security vulnerabilities, 2021.

[9] Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang, K. Hoppity: Learning

graph transformations to detect and fx bugs in programs. In Proceedings of the International

Conference on Learning Representations (2020).

[10] Ding, Y., Buratti, L., Pujar, S., Morari, A., Ray, B., and Chakraborty, S.

Towards learning (dis)-similarity of source code from program contrasts. In Proceedings of

the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers) (Dublin, Ireland, May 2022), S. Muresan, P. Nakov, and A. Villavicencio, Eds.,

Association for Computational Linguistics, pp. 6300–6312.

[11] Ding, Y., Suneja, S., Zheng, Y., Laredo, J., Morari, A., Kaiser, G., and Ray, B.

VELVET: a novel ensemble learning approach to automatically locate vulnerable statements.

In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (Los Alamitos, CA, USA, Mar 2022), SANER ’22, IEEE Computer

Society, pp. 959–970.

[12] Fan, J., Li, Y., Wang, S., and Nguyen, T. N. A C/C++ code vulnerability dataset

with code changes and CVE summaries. In Proceedings of the 17th International Conference

on Mining Software Repositories (New York, NY, USA, 2020), MSR ’20, Association for

Computing Machinery, p. 508–512.

35

[13] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,

Liu, T., Jiang, D., and Zhou, M. CodeBERT: A pre-trained model for programming and

natural languages. In Findings of the Association for Computational Linguistics: EMNLP

2020 (Online, Nov. 2020), T. Cohn, Y. He, and Y. Liu, Eds., Association for Computational

Linguistics, pp. 1536–1547.

[14] Fu, M., and Tantithamthavorn, C. LineVul: A transformer-based line-level

vulnerability prediction. In Proceedings of the 19th International Conference on Mining

Software Repositories (New York, NY, USA, 2022), MSR ’22, Association for Computing

Machinery, p. 608–620.

[15] Hanif, H., and Maffeis, S. VulBERTa: Simplifed source code pre-training for

vulnerability detection. In Proceedings of the 2022 International Joint Conference on Neural

Networks (2022), IJCNN ’22, pp. 1–8.

[16] Hellendoorn, V. J., Sutton, C., Singh, R., Maniatis, P., and Bieber, D. Global

relational models of source code. In International Conference on Learning Representations

(2020).

[17] Hin, D., Kan, A., Chen, H., and Babar, M. A. LineVD: Statement-level vulnerability

detection using graph neural networks. In Proceedings of the 19th International Conference

on Mining Software Repositories (New York, NY, USA, 2022), MSR ’22, Association for

Computing Machinery, p. 596–607.

[18] Jaccard, P. The distribution of the fora in the alpine zone.1. New Phytologist 11, 2

(1912), 37–50.

36

[19] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles,

T., Keeling, J., Gimeno, F., Dal Lago, A., Hubert, T., Choy, P.,

de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,

Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Sutherland Robson,

E., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals, O. Competition-level

code generation with alphacode. Science 378, 6624 (Dec. 2022), 1092–1097.

[20] Li, Y., Wang, S., and Nguyen, T. N. Vulnerability detection with fne-grained

interpretations. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (New

York, NY, USA, 2021), ESEC/FSE 2021, Association for Computing Machinery, pp. 292–303.

[21] Li, Z., Zou, D., Xu, S., Chen, Z., Zhu, Y., and Jin, H. VulDeeLocator: A Deep

Learning-based Fine-grained Vulnerability Detector. IEEE Transactions on Dependable and

Secure Computing 19, 4 (Jul 2021), 1–1. arXiv: 2001.02350.

[22] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. SySeVR: A Framework for

Using Deep Learning to Detect Software Vulnerabilities . IEEE Transactions on Dependable

and Secure Computing 19, 04 (July 2022), 2244–2258.

[23] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong, Y.

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. In Proceedings of

the Network and Distributed System Security Symposium (2018), NDSS ’18, Internet Society.

[24] Lin, G., Wen, S., Han, Q.-L., Zhang, J., and Xiang, Y. Software vulnerability

detection using deep neural networks: A survey. Proceedings of the IEEE 108, 10 (2020),

1825–1848.

[25] Lin, G., Xiao, W., Zhang, L. Y., Gao, S., Tai, Y., and Zhang, J. Deep neural-based

vulnerability discovery demystifed: data, model and performance. Neural Computing and

Applications 33, 20 (Oct 2021), 13287–13300.

37

[26] Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement,

C. B., Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L.,

Tufano, M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S. K., Fu, S.,

and Liu, S. CodeXGLUE: A machine learning benchmark dataset for code understanding

and generation. CoRR abs/2102.04664 (2021).

[27] Mazuera-Rozo, A., Mojica-Hanke, A., Linares-V´ asquez, M., and Bavota, G.

Shallow or Deep? An Empirical Study on Detecting Vulnerabilities using Deep Learning. In

Proceedings of the IEEE/ACM 29th International Conference on Program Comprehension

(May 2021), ICPC ’21, pp. 276–287. ISSN: 2643-7171.

[28] McCabe, T. A complexity measure. IEEE Transactions on Software Engineering SE-2, 4

(1976), 308–320.

[29] Nguyen, V.-A., Nguyen, D. Q., Nguyen, V., Le, T., Tran, Q. H., and Phung, D.

ReGVD: Revisiting graph neural networks for vulnerability detection. In 2022 IEEE/ACM

44th International Conference on Software Engineering: Companion Proceedings

(ICSE-Companion) (2022), pp. 178–182.

[30] Phan, L., Tran, H., Le, D., Nguyen, H., Annibal, J., Peltekian, A., and Ye, Y.

CoTexT: Multi-task learning with code-text transformer. In Proceedings of the 1st Workshop

on Natural Language Processing for Programming (Online, Aug. 2021), R. Lachmy, Z. Yao,

G. Durrett, M. Gligoric, J. J. Li, R. Mooney, G. Neubig, Y. Su, H. Sun, and R. Tsarfaty,

Eds., NLP4Prog ’21, Association for Computational Linguistics, pp. 40–47.

[31] Puri, R., Kung, D., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V.,

Dolby, J. T., Chen, J., Choudhury, M., Decker, L., Thost, V., Thost, V.,

Buratti, L., Pujar, S., Ramji, S., Finkler, U., Malaika, S., and Reiss, F. Codenet:

A large-scale ai for code dataset for learning a diversity of coding tasks. In Proceedings of the

Neural Information Processing Systems Track on Datasets and Benchmarks (2021),

J. Vanschoren and S. Yeung, Eds., vol. 1.

38

[32] Ribeiro, M. T., Singh, S., and Guestrin, C. “Why should i trust you?” Explaining the

predictions of any classifer. In Proceedings of the 22nd ACM SIGKDD international

conference on knowledge discovery and data mining (2016), KDD ’16, pp. 1135–1144.

[33] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O.,

Ellingwood, P., and McConley, M. Automated vulnerability detection in source code

using deep representation learning. 17th IEEE International Conference on Machine

Learning and Applications (2018), 757–762. Publisher: IEEE.

[34] Song, Z., Wang, J., Liu, S., Fang, Z., and Yang, K. HGVul: A code vulnerability

detection method based on heterogeneous source-level intermediate representation. Security

and Communication Networks 2022, 1 (2022), 1919907.

[35] Strom, R. E., and Yemini, S. Typestate: A programming language concept for enhancing

software reliability. IEEE Transactions on Software Engineering SE-12, 1 (1986), 157–171.

[36] Sundararajan, M., Taly, A., and Yan, Q. Axiomatic attribution for deep networks. In

Proceedings of the 34th International Conference on Machine Learning - Volume 70 (2017),

ICML ’17, JMLR.org, p. 3319–3328.

[37] Tang, G., Meng, L., Wang, H., Ren, S., Wang, Q., Yang, L., and Cao, W. A

Comparative Study of Neural Network Techniques for Automatic Software Vulnerability

Detection. In 2020 International Symposium on Theoretical Aspects of Software Engineering

(Dec 2020), TASE ’20, pp. 1–8.

[38] Tenney, I., Wexler, J., Bastings, J., Bolukbasi, T., Coenen, A., Gehrmann, S.,

Jiang, E., Pushkarna, M., Radebaugh, C., Reif, E., and Yuan, A. The language

interpretability tool: Extensible, interactive visualizations and analysis for NLP models. In

Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing:

System Demonstrations (Online, Oct 2020), Association for Computational Linguistics,

pp. 107–118.

https://JMLR.org

39

[39] Tripp, O., Pistoia, M., Fink, S. J., Sridharan, M., and Weisman, O. TAJ: efective

taint analysis of web applications. ACM SIGPLAN Notices 44, 6 (Jun 2009), 87–97.

[40] Wang, X., Wang, Y., Mi, F., Zhou, P., Wan, Y., Liu, X., Li, L., Wu, H., Liu, J.,

and Jiang, X. SynCoBERT: Syntax-Guided Multi-Modal Contrastive Pre-Training for

Code Representation, Sep 2021. arXiv:2108.04556.

[41] Wu, Y., Zou, D., Dou, S., Yang, W., Xu, D., and Jin, H. VulCNN: an image-inspired

scalable vulnerability detection system. In Proceedings of the 44th International Conference

on Software Engineering (New York, NY, USA, May 2022), ICSE ’22, Association for

Computing Machinery, pp. 2365–2376.

[42] Xu, J., Ai, J., Liu, J., and Shi, T. ACGDP: An Augmented Code Graph-Based System

for Software Defect Prediction. IEEE Transactions on Reliability (2022), 1–10. Conference

Name: IEEE Transactions on Reliability.

[43] Ying, R., Bourgeois, D., You, J., Zitnik, M., and Leskovec, J. GNNExplainer: A

tool for post-hoc explanation of graph neural networks. CoRR abs/1903.03894 (2019).

[44] Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., and Liu, X. A Novel Neural

Source Code Representation Based on Abstract Syntax Tree. In Proceedings of the

IEEE/ACM 41st International Conference on Software Engineering (Montreal, QC, Canada,

May 2019), ICSE ’19, IEEE, pp. 783–794.

[45] Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E., Yang, B., Laredo, J.,

Morari, A., and Su, Z. D2A: A dataset built for ai-based vulnerability detection methods

using diferential analysis. In Proceedings of the ACM/IEEE 43rd International Conference

on Software Engineering: Software Engineering in Practice (New York, NY, USA, 2021),

ICSE-SEIP ’21, Association for Computing Machinery.

40

[46] Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. Devign: Efective vulnerability

identifcation by learning comprehensive program semantics via graph neural networks.

Advances in Neural Information Processing Systems 32 (2019).

41

CHAPTER 3. DEEPDFA: DATAFLOW ANALYSIS-INSPIRED DEEP

LEARNING FOR EFFICIENT VULNERABILITY DETECTION

Benjamin Steenhoek1 , Hongyang Gao2 , and Wei Le3

1-3 Department of Computer Science, Iowa State University, Ames, IA, 50011

Modifed from a manuscript published in the 46th International Conference on Software

Engineering (ICSE 2024)

Abstract

Deep learning-based vulnerability detection has shown great performance and, in some

studies, outperformed static analysis tools. However, the highest-performing approaches use

token-based transformer models, which are not the most efcient to capture code semantics

required for vulnerability detection. Classical program analysis techniques such as datafow

analysis can detect many types of bugs based on their root causes. In this chapter, we propose to

combine such causal-based vulnerability detection algorithms with deep learning, aiming to

achieve more efcient and efective vulnerability detection. Specifcally, we designed DeepDFA, a

datafow analysis-inspired graph learning framework and an embedding technique that enables

graph learning to simulate datafow computation. We show that DeepDFA is both performant

and efcient. DeepDFA outperformed all non-transformer baselines. It was trained in 9 minutes,

75x faster than the highest-performing baseline model. When using only 50+ vulnerable and

several hundreds of total examples as training data, the model retained the same performance as

100% of the dataset. DeepDFA also generalized to real-world vulnerabilities in DbgBench; it

detected 8.7 out of 17 vulnerabilities on average across folds and was able to distinguish between

patched and buggy versions, while the highest-performing baseline models did not detect any

vulnerabilities. By combining DeepDFA with a large language model, we surpassed the

42

state-of-the-art vulnerability detection performance on the Big-Vul dataset with 96.46 F1 score,

97.82 precision, and 95.14 recall. Our replication package is located at

https://doi.org/10.6084/m9.figshare.21225413.

3.1 Introduction

Software vulnerabilities cause great harm to people and corporations. Many Internet users

have had their personal information breached because of security vulnerabilities, with common

reports of breaches exposing millions of records [52]. The average data breach costs the target

company $4.24 million, according to IBM’s 2021 report [2]. The number of vulnerabilities is

growing every year, as reported by the Common Vulnerability Enumeration (CVE) from

2016-2021 [1]. Due to its importance, we urgently need to develop efective and automatic

vulnerability detection tools.

The rapid advance of AI technologies has motivated software companies to invest heavily in

deep learning-based vulnerability detection tools [39, 55]. These tools have outperformed

traditional static analysis [38, 20, 11]. Recently, large language models (LLMs) have reported

state-of-the-art results; LineVul [24], a recent model based on CodeBERT, reported 91 F1 score

on a commonly used real-world vulnerability dataset [22].

However, LLMs require large amounts of training data and computational resources for

training and inference (see Section 3.5.4), but a large volume of high-quality vulnerability

detection data is hard to get. They also can fail to detect vulnerabilities beyond the training

dataset (see Section 3.5.5); for example, the top-performing transformer models LineVul and

UniXcoder were not able to detect any of the real-world vulnerabilities in DbgBench [9].

Furthermore, by using solely text tokens, these models may not efectively learn program

semantics, such as program values along paths, propagation of taint values, and security-sensitive

API calls along the control fow paths. The performance of these models can be further improved

when we consider such information (see Section 3.5.3).

https://doi.org/10.6084/m9.figshare.21225413

43

In this chapter, we explore the idea of combining datafow analysis (DFA) algorithms with

deep learning to develop small, efcient, yet efective models for vulnerability detection. In prior

literature [53, 16], deep learning integrated with domain-specifc knowledge and algorithms has

reported improved performance and better generalization to unseen data, while using less data

and computational resources.

Datafow Analysis (DFA) computes the data usage patterns and relations in the control fow

graph (CFG) of a program and reports a vulnerability based on its root cause, i.e., whether the

values and data relations collected from the program indicate the occurrence of the vulnerable

conditions. Graph learning (learning based on graph neural networks (GNN)) can aggregate and

propagate information in the graph in a similar fashion to DFA. In this chapter, we explore the

analogy between DFA and the GNN message-passing mechanism and design an embedding

technique that encodes datafow information at each node of the CFG. Specifcally, we leverage

the efcient bit-vector representation of datafow facts to encode the defnitions and uses of the

variables. Graph learning on such an embedding propagates and aggregates datafow information

and thus simulates the datafow computation as done in DFA. Using this approach, we hope that

the learned graph representation can better encode program semantic information, e.g., reaching

defnitions, which will be very useful for accurate vulnerability detection.

Based on this rationale, we developed an abstract datafow embedding that can map variable

defnitions of individual programs to a common space so that the model can compare and

generalize data usage patterns (datafow) related to vulnerabilities across programs. We selected a

graph learning architecture whose aggregate and update functions worked most efectively for the

datafow propagation.

Our evaluation shows that DeepDFA is substantially faster than our baseline models in terms

of both training and inference time. It only took 9 minutes to train, and inference on a CPU took

5.8 ms/example. This remarkable efciency permits applications for personalized training and

inference in non-GPU environments. It is also efcient in its use of training data, achieving its

best F1 score using only 50+ vulnerable examples and several hundred total examples

44

(Section 3.5.4). This frugality allows applications within a single development team, where it may

be impractical to collect thousands of vulnerable examples. Yet, DeepDFA still outperformed all

non-transformer baselines (Section 3.5.3) and retained its performance on unseen projects better

than all baseline models (Section 3.5.5). Additionally, when applied to a real-world benchmark of

unseen projects, DbgBench [9], DeepDFA detected 8.7 out of 17 of bugs (averaged over 3 runs)

and correctly reported 3 out of 5 patched programs as non-vulnerable (Section 3.5.5). In

comparison, the highest-performing baselines, LineVul [24] and UniXcoder [26], did not detect

any vulnerabilities. We also show that DeepDFA’s learned representation can be used with other

models to further improve their performance. By combining UniXcoder with DeepDFA, we

surpassed state-of-the-art performance with 96.46 F1 score, 97.82 precision, and 95.14 recall.

In summary, we made the following contributions:

1. We designed an abstract datafow embedding to enable deep learning to generalize

semantics/datafow patterns of vulnerabilities across programs (Section 3.4.1);

2. We applied graph learning on the control fow graph (CFG) of the program and abstract

datafow embedding to simulate reaching defnition datafow analysis (Section 3.4.2);

3. We implemented DeepDFA and experimentally demonstrated that DeepDFA outperforms

baselines in vulnerability detection for efectiveness, efciency, and generalization over

unseen projects (Section 3.5);

4. We provided rationale to help understand why DeepDFA performs well and is efcient

(Section 3.3); and

5. We surpassed the state-of-the-art vulnerability detection performance by combining

DeepDFA and UniXcoder (Section 3.5).

3.2 Overview

We propose DeepDFA, a deep learning framework guided by datafow analysis algorithms,

shown in Figure 3.1. Given the source code of a potentially vulnerable program (left), we convert

45

int main(int argc, char **argv)

{
char *str = NULL;
if (argc > 1)
{

str = malloc(10 * argc);
}
str[(10 * argc)-1] = 0;
//...

}

Source code

: str[(10 * argc)-1] = 0

Dataflow analysis-guided

Graph learning

: char *str = NULL
(definition)

: (char *) str = malloc(10 * argc)
(definition)

TRUE

: if (argc > 0)

: str[(10 * argc)-1] = 0
(definition)

FALSE

CFG + abstract dataflow embedding

: str = malloc(10 * argc): if (argc > 0)

datatype API constant

operator

datatype constant

Figure 3.1: Overview of DeepDFA.

it to a CFG and encode the nodes using an abstract datafow embedding which we designed. The

CFG specifes the execution order of statements, and is the data structure on which datafow

analysis operates.

In the middle of the fgure, we show our approach of computing abstract datafow

embeddings. In datafow analysis, defnitions of variables, e.g., a=3, are program specifc.

Applying to deep learning, we abstract these concrete defnitions from diferent programs, and

hypothesize that the usage patterns of the abstract defnitions can be compared and summarized

across programs during learning. To construct the abstract defnitions, we used the properties of

defnitions that are important for vulnerability detection, based on domain knowledge from

program analysis. Specifcally, we considered the data types of the defned variable, the API calls,

constants, and operators used to defne the variables. Inspired by the bit-vector representation

used in datafow analysis, we encode the abstract defnitions in a compact and very efcient

fashion. We will provide more detailed design of this embedding in Section 3.4.1.

We used a bit-vector style of representing a set of abstraction defnitions. This numerical

representation can be directly used as the initial node representations for graph learning. In the

right of the fgure, we apply graph learning which aggregates the information from nodes like the

“merge” operation performed in datafow analysis, and also updates using the information at each

46

nodes like the “update” operation performed in datafow analysis. We provide more background

on the analogy in Section 3.

Finally, we use the learned graph representation to classify whether the function is vulnerable

or not. By directly propagating datafow information through graph learning, we hope to present

to the classifer a representation of the program which encodes useful information directly related

to vulnerability, achieving efcient and efective vulnerability detection. The advantage of deep

learning is that the mapping from the encodings of programs to the decisions are learned from the

data, but in datafow analysis, we need to manually craft rules to map from the datafow analysis

results to vulnerability decisions.

3.3 Rationale

In this section, we provide the relevant background of datafow analysis for vulnerability

detection and graph learning. It provides understanding on why our approach is efcient and

efective. Then, we compared the closely related work that also considers datafow in deep

learning to clarify the novelty of our work.

3.3.1 Datafow Analysis for Vulnerability Detection

Datafow analysis (DFA) is a method for computing data usage patterns in a program. In

addition to compiler optimization, datafow analysis is an important method for vulnerability

detection. One instance of datafow analysis, called reaching defnition analysis, reports at which

program points a particular variable defnition can reach. A defnition reaches a node when there

is a path in the CFG that connects the defnition and the node, and the variable is not redefned

along the path. The reaching defnition analysis can detect a null-pointer dereference vulnerability

based on its root cause when it identifes that a defnition of an NULL pointer reaches a

dereference of the pointer. Similarly, it is a causal step to detect many other vulnerabilities such

as bufer overfows, integer overfow, uninitialized variables, double-free and use-after-free [12].

47

DFA uses two equations to propagate the datafow information through the neighboring nodes

in the CFG, namely meet operator and transfer function [4]. The meet operator aggregates the

datafow sets from its neighbors. The transfer function updates the datafow set using the

information available in the node v. In the reaching defnition analysis, the datafow set is a set of

defnitions that reach a program point. A simple approach of performing a DFA is the Kildall

method [33]. It iteratively propagates the datafow information to the neighbors of v in the CFG,

one step at a time. The algorithm terminates when the datafow information of all nodes stops

changing, denoted a fxpoint. At termination, all nodes will incorporate the datafow information

from all other relevant nodes. When used for vulnerability detection, this information is compared

to a user-specifed vulnerability condition to determine whether a vulnerability has occurred in

the program.

3.3.2 Analogy of Graph Learning and Datafow Analysis

Graph learning starts with an initial node representation, and then it performs a fxed number

of iterations of the message-passing algorithm [25] to propagate information through the graph.

The initial node representation is generally a fxed-size continuous vector which represents the

content of the node. At each iteration, each node aggregates information from its neighbors, and

then updates its state to integrate the information. The two steps are done through the

AGGREGATE and UPDATE functions, similar to the two datafow equations of meet operator

and transfer function. These functions can be simple numerical equations or neural networks.

After iteration is done, all node representations are combined to produce a graph-level

representation, which is passed to a classifer layer to make a prediction.

In Figure 3.4, we visualize the analogy between graph learning and datafow analysis on a

snippet of CFG. In the CFG, each node is a statement, and each edge indicates the order of

execution between two statements. In Figure 3.2, we show the two datafow equations [4] that

defne a reaching defnition datafow analysis.

48

Figure 3.2: Datafow Analysis. Figure 3.3: Graph Learning.

Figure 3.4: Analogy of information propagation in Datafow Analysis and Graph Learning.

meet operator: IN [v] =
[

OUT [u] (3.1)
u∈pred(v)

transfer function:
[

OUT [v] = GENv (IN [v] − KILLv) (3.2)

where IN [v] and OUT [v] are the sets of datafow located at the beginning and end of a

statement. GENv and KILLv represent the datafow generated (new defnitions) and killed

(overwritten defnition) in node v. Reaching defnition is a may datafow problem and thus the

meet operator used union to merge the datafow information from its predecessors. Meanwhile,

reaching defnition is a forward datafow problem, and thus we used IN [v], GENv, and KILLv to

compute the datafow at the exit of the statement.

In Figure 3.3, we show an analogous behavior of graph learning.

tAGGREGATE : a = AGGREGATE({ht−1|u ∈ pred(v)}) (3.3)v u

tUPDATE : ht = UPDATE(ht−1 , a) (3.4)v v v

twhere a denotes the aggregated information from the neighboring nodes and ht denotes thev v

state of node v after t iterations of message-passing (analogous to OUT [v]). We set t as a

hyperparameter.

49

3.3.3 The Novelty of Our Work

Previously, researchers have proposed to integrate datafow information with deep learning for

program analysis tasks. A category of approaches similar to Devign [56] used data dependency

graphs as a part of the program representation on which deep learning is performed. However,

Devign used word embeddings to encode statements into vector representations based on their

unstructured text content. Such an encoding, even propagated through data dependency edges,

cannot directly capture the datafow patterns.

ProGraML [17] has developed graph learning on LLVM IR code and applied it for compiler

optimization tasks. It is another work that pointed out the analogy between DFA and graph

learning. Their solution is to modify CFGs by creating instruction nodes and data nodes

separately. ProGraML adds control-fow edges between instruction nodes and data-fow edges

between the data nodes. However, this work encoded nodes using an embedding which only

represents LLVM IR operators and variable types. This approach is very coarse-grained in that

many statements can have the same operators and variable types, but they will lead to diferent

datafow. Therefore, similar to Devign, the propagation of such an encoding even along datafow

edges does not directly capture datafow patterns.

Our abstract datafow embedding attempts to directly represent the variable defnitions which

are propagated in DFA and is modeled after the bit-vector representation used in DFA, which

allows the network to learn the operations of the datafow analysis algorithm. We also target a

specifc problem (reaching defnitions, which was not targeted by ProGraML), for which the

results of DFA are directly useful and pertinent to vulnerability detection (e.g. § 4.2).

3.4 Approach

Based on the analogous behaviors of DFA and GNN, we designed a node embedding that can

represent the datafow set at each node. We developed DeepDFA, a deep learning framework

which conducts graph learning on the CFG of a program and propagates datafow information for

vulnerability detection.

50

3.4.1 Abstract Datafow Embedding

In datafow analysis, we use a bit vector to represent the datafow set at each node. A bit

vector consists of n bits of 0s and 1s. Its length is the size of the domain. A bit is set to 1 if its

corresponding element is present in the set. In reaching defnition analysis, the domain consists of

all the defnitions in the program, and the bits are set to “1” if the corresponding defnitions

reach the node. For example, in Figure 3.1, the program contains three defnitions at nodes v1, v3,

and v4 so the reaching defnition analysis uses a bit vector [0 0 0] to initialize each node at the

beginning of the analysis. This bit vector represents OUT [v] in the datafow equations (See

Section 3.3.2). It is updated at each step of propagation, and when the analysis terminates, the

bit vectors for each node represent all possible defnitions that can reach that node.

The bit-vector representation of reaching defnition analysis efciently encodes program

semantic features related to vulnerability detection. The defnitions of programs can be quickly

obtained at the node via lightweight analysis locally at the statements. However, in graph

learning, we cannot directly use the bit vector of defnitions as the node embedding. This is

because in datafow analysis and the domain of defnitions are both specifc to a program. In

other words, diferent programs have diferent variable defnitions; the bit vectors of each program

thus have diferent lengths and the elements (each defnition) are not comparable either. Whereas,

in graph learning, we want to extract datafow patterns of vulnerabilities from all the programs in

the training dataset. Thus, we need to have a “global” defnition set that can be used to specify

defnitions for diferent programs, so that graph learning can compare them and generalize from

them.

To address this challenge, we map all the concrete defnitions in the programs in a training

dataset to abstract defnitions by identifying important properties of the defnitions. Following a

list of attack surfaces identifed by Moshtari et al. [41], we designed the following four properties

that can encompass the attack surfaces of a vulnerability and used them to represent a defnition:

1. API call: the call to library or system functions used to defne a variable, e.g. malloc and

strlen.

51

Extract properties

datatype

0: NONE
1: UNKNOWN
2: int

3: char *

4: double

API

0: NONE
1: UNKNOWN
2: malloc

3: getchar

4: getline

constant

0: NONE
1: UNKNOWN
2: NULL

3: 0

4: 10

(char *) str = malloc(10 * argc)

operator

0: NONE
1: UNKNOWN
2: +

3: -

4: *

Build dictionaries for
the 4 properties

char *foo = NULL;

char *p = "https://...";

int i = 0; str = malloc(10 * argc)

Abstract dataflow embedding

Source code

Abstract dataflow
embedding

0
0

0

0
1
0

0
0
1
0
0

0
0
0
0
1

0
0
0
0
1

1
2
3
4

Index

Figure 3.5: Abstract datafow embedding generation.

2. Data type: the data type of the variable being assigned, e.g. int, char* and float.

3. Constant: the constant values assigned in the defnition, e.g. NULL, -1 and the hard-coded

string "foo".

4. Operator: the operators used to defne a variable, e.g. +, - and *.

We analyze a large corpus of programs, e.g., the training set, and collect the top-k frequently

used API calls, data types, constants and operators to construct a dictionary. k is a

hyperparameter of DeepDFA. We select only the top-k keys because the representations of

user-defned names of APIs and data types cannot be generalized across programs unless they are

represented frequently in the dataset.

In Figure 3.5, we show an example of abstract datafow embedding for an example d2 in

Figure 1: str = malloc(10 * argc). This defnition used an API call, malloc, with the constant

10, operator *, and data type char*. Contrasted with the 3-bit bit vector (the example in Figure

1 includes three variable defnitions) that represents a concrete defnition in datafow analysis for

this program, the abstract embedding is larger but a fxed size, consisting of 5x4 elements for this

example. Here, 4 is the four properties we considered and 5 is the hyper-parameter k we

mentioned above, which defnes the size of the pre-defned dictionary, and the length 5 hot-vector

encoding represents the value of the property. Because the vector that encodes the abstract

52

datafow embedding has a fxed size, our embedding approach can scale to any program size in

the dataset without impacting the model’s efciency. The vectors in diferent programs encode

common properties of defnitions, so the model can capture the datafow patterns across programs.

Abstraction potentially brings in approximation. Using the abstract datafow embedding, two

diferent defnitions may lead to the same encoding. The embedding is designed to be sparse

enough that within a program, unique defnitions are often represented by unique embedding

keys, which allows the model to distinguish defnitions within the same function, similar to the

bit-vector used in datafow analysis.

3.4.2 Using Graph Learning to Propagate Datafow Information

Our goal in utilizing graph learning is to learn a node embedding that contains datafow

information. Without loss of generality, we use reaching defnition as an instance of datafow

analysis for our explanations. Our approach takes the following steps. First, we construct the

CFG for a program. Second, we perform static analysis to identify all the defnitions in the CFG.

We then initialize each node of the CFG using the abstract datafow embedding, based on

whether the node is a defnition or not. The abstract datafow embedding is computed from all

the programs in the training dataset (see Section 3.4.1 for details).

Once the nodes are initialized, we apply the message-passing algorithm [25] from graph

learning to propagate the datafow information throughout the CFG, similar to Kildall’s

method [33]. The main diferences are that (1) we propagate the abstract datafow embeddings of

the CFG nodes, and (2) instead of using the datafow equations of transfer function and meet

operator, we alternatively apply the AGGREGATE and UPDATE functions defned in

Equations (3.3) and (3.4) (See Section 3.3). Although the analogy applies for all GNN

architectures trained with message-passing, we implemented our approach using a Gated Graph

Sequence Neural Network (GGNN) [36], where AGGREGATE is an Multi-Layer Perceptron

53

(MLP) and UPDATE is a Gated Recurrent Unit (GRU); we will use this architecture as an

example to compare the two algorithms.

When datafow information arrives at the merge point of a branch in CFG, graph learning

applies the AGGREGATE function. Specifcally, in GGNN, the MLP calculates a weighted sum

of the representations of multiple neighboring predecessors, resulting in a single vector; this fulflls

the same function as the meet operator. When datafow information arrives at a new node, the

UPDATE function in graph learning computes the next state by combining the information in

the current node with the output of AGGREGATE from its predecessors. Specifcally, in GGNN,

the GRU selectively forgets portions of the previous state and integrates new information from

the current node and from the neighboring states, similar to the set union/diference with

GEN/KILL performed in the transfer function. Through applying AGGREGATE and UPDATE ,

the initial embedding will be updated with the datafow information from the neighboring nodes,

similar to the efect of datafow analysis.

As Cummins et al. [17] noted, DFA iterates to a fxpoint and thus propagates information

throughout the entire graph, while graph learning performs a fxed number of iterations t and

thus propagates to neighbors in a distance t. We set t to the setting which maximized

validation-set performance.

Finally, we combine the learned abstract node embeddings to produce graph level

representation using Global Attention Pooling [36], and pass it to a classifer to predict the

function as vulnerable or non-vulnerable.

The AGGREGATE and UPDATE functions are learned from labeled data during training,

rather than using a fxed formula as in datafow analysis. By learning from data, we provide an

alternative solution to the challenges that often block datafow analysis such as tracking pointers

and handling library calls. Importantly, we no longer need to explicitly specify vulnerability

conditions, as required in static analysis. Through learning from training examples, the classifer

can capture patterns of datafow information that represent various types of vulnerabilities and

also select the relevant datafow information for vulnerability detection.

54

Table 3.1: OUT [v] at each iteration of DFA.

Iteration v1 v2 v3 v4

0 [0 0 0] [0 0 0] [0 0 0] [0 0 0]

1 [1 0 0] [0 0 0] [0 1 0] [0 0 1]

2 [1 0 0] [1 0 0] [0 1 0] [0 1 1]

3 [1 0 0] [1 0 0] [0 1 0] [1 1 1]

In Table 3.1, we step through a reaching defnition analysis for the CFG example in Figure 4.2

to demonstrate how datafow information propagates through the graph and how our approach

uses datafow information for vulnerability detection.

The row Iteration 0 shows the initialization of each node in the reaching defnition analysis.

At iteration 1, the DFA updates OUT [v1], OUT [v3] and OUT [v4] using the transfer function to

indicate that the new defnitions are introduced at the nodes. At iteration 2, OUT [v1] (including

d1) propagates to v2 and OUT [v3] (including d2) propagates to v4, through the CFG edges. At

iteration 3, the meet operator is used to combine OUT [v2] and OUT [v3]. Specifcally, S
IN [v4] = {OUT [v2], OUT [v3]}, computed as [1 0 0] ∨ [0 1 0] = [1 1 0] ; then the transfer function

combines IN [v4] with GENv4 , resulting in OUT [v4] = [1 1 1] .

After the DFA algorithm terminates, the fnal states of the nodes are used to detect

vulnerabilities. The state of v4 is [1 1 1] , which indicates that both d1 and d2 may reach v4

depending on the program values. Because the defnition d1 : str = NULL can reach the

dereference at v4, we can conclude that this program has a null-pointer dereference vulnerability.

Similarly, in graph learning, after a fxed number of iterations, all the node representations are

combined using a graph readout operation to produce a graph-level representation, which is used

to predict for vulnerability detection. Programs with the null-pointer dereference bugs will have

the same abstract defnitions characterized by the char* type and the constant NULL to reach the

pointer dereference statements. We believe that the datafow information represented by DeepDFA

will allow a relatively simple classifer to recognize this pattern among the training dataset.

55

3.5 Evaluation

In the evaluation, we studied 3 research questions:

1. Is DeepDFA efective for fnding vulnerabilities?

2. Is DeepDFA efcient, both in terms of training data and computational resources?

3. Can DeepDFA generalize to unseen projects?

We also performed ablations on DeepDFA to understand the efects of each feature on its

performance.

3.5.1 Implementation

To explore whether DeepDFA can advance the state-of-the-art, we created two settings,

DeepDFA and DeepDFA+LLM. We implemented DeepDFA using the GGNN

architecture [36] and based on LineVD’s implementation1 , using PyTorch and DGL2 . We used

Joern3 to parse the CFGs because it does not require compilation; this allows our approach to be

utilized out-of-the-box given only the source code, without extra confguration. To implement

DeepDFA+LLM, during training and inference, we combine the graph embedding generated by

DeepDFA’s graph readout stage with the sentence embedding produced by the fnal self-attention

layer of LLM. The embeddings are concatenated and fed into a feed-forward classifer layer; both

embeddings and the classifer are trained jointly. We believe that providing datafow information

can improve the LLM embedding, as LLM is trained exclusively from text and it is hard to learn

datafow relations among all the dependencies of tokens.

To avoid data leakage, we extracted the initial abstract datafow embedding from the training

set only. We set the hyperparameters k and t based on the best validation performance through

our experimentation. When k = 1000, the model covered most (79.38%) of the defnitions in the

test dataset. That means, the dictionary still misses some APIs, constants, data types or

1https://github.com/davidhin/linevd
2All of our code and data are available at https://doi.org/10.6084/m9.figshare.21225413
3Joern version 1.1.1072, available at https://joern.io

https://github.com/davidhin/linevd
https://doi.org/10.6084/m9.figshare.21225413
https://joern.io

56

Table 3.2: Hyperparameters used for training DeepDFA.

Hyperparameter Value

λ (learning rate) −31e

L2 weight −21e

k (threshold) 1000
t (number of GNN steps) 5
Hidden size 32
output layers 3
Batch size 256

operators that occur in the test data set but are not frequent in the training dataset. To learn a

more general representation and improve the coverage for test dataset, in future work, we can

train the abstract datafow embedding using a very large dataset of code, e.g., using

self-supervised learning without the need of vulnerability labels.

For reproducibility, Table 3.2 documents the hyperparameters we used for training DeepDFA.

3.5.2 Experimental setup

In the recent literature [24, 35, 13], vulnerability detection models are typically evaluated with

the Devign [56] or Big-Vul [22] datasets, both of which contain real-world open-source C/C++

projects. In our evaluation, we used the Big-Vul dataset because (1) it is bigger than Devign,

consisting of 188,636 functions with 10,900 (6%) vulnerable labels and 177,736 (94%)

non-vulnerable labels, and (2) it refects the imbalanced distribution of real-world code (Devign is

a balanced dataset), with the minority of code being labeled as vulnerable [13]. To corroborate

our results, we also evaluated the models on DbgBench [9], explained further in RQ3.

Scope: Currently, DeepDFA reports whether a function is vulnerable or not. We can further

apply deep learning explanation tools to report line level vulnerabilities, as done in the work of Li

et al. [35]. We leave this evaluation for future work. We evaluated DeepDFA on C/C++

programs, as done by the most deep learning-based vulnerability detection tools. However, we

believe that DeepDFA can also be applied to other popular programming languages, such as

57

Python and Java. This is because we extract the abstract datafow embedding (API, datatype,

literal, operator) from the training dataset, independent of the programming language.

RQ1: To evaluate the models’ performance, we trained the models on the train/validation/test

splits of 80/10/10% published by the LineVul paper [24]. To address class imbalance while

training DeepDFA, we undersampled the majority class (non-vulnerable) following Japkowicz [31];

our initial studies found that this improved our performance on the validation set. We kept the

original ratio of vulnerable/non-vulnerable labels for the validation and test sets. We used

Joern4 [54] to parse the code into its CFG representation. Joern could not parse some programs

in the dataset (0.8%; see Section 3.B for details), so we used the remaining data in our

experiments. The performance of the baseline models was similar to the full dataset (see

Sections 3.C and 3.F for details).

We report the following performance metrics:

TP • Precision reports the portion of positive predictions which were correct: P = TP +FP .

• Recall calculates the portion of positive examples which were recalled correctly:

TP R = TP +FN .

P ∗R• F1 is the harmonic mean between Precision and Recall: F 1 = 2 ∗ P +R . We used F 1 to

decide the highest performing model because it balances precision and recall, which are both

important in an imbalanced dataset.

Since the model performance can vary with diferent random seeds [48], we trained the models

3 times with diferent random seeds and reported the mean score and standard deviation for each

metric. We used McNemar’s statistical test, following best practices [18], to confrm that our

improvement is statistically signifcant, using the implementation in statsmodels v0.14.0 [47].

RQ2: To evaluate the models’ efciency in terms of computational resources, we measured the

runtime and memory usage. These are often contested resources in deep learning workloads [30].

We report the following metrics for runtime and memory usage:

4https://joern.io

https://joern.io

58

• Training time: the wall-clock time to execute one training run with one validation run per

epoch

• Inference time: the average wall-clock time to predict for one example.

• MACs: the average number of Multiply-Accumulate operations5 to predict for one

example; this measures the performance independently of the computing platform [49, 30].

• Parameter count: the number of trainable parameters in the neural network model.

We evaluated the runtime on an AMD Ryzen 5 1600 3.2 GHz processor with 48GB of RAM

and an Nvidia 3090 GPU with 24GB of GPU memory.

To evaluate the models’ efciency in terms of training data, we trained the models on

progressively smaller subsets which we randomly sampled from Big-Vul (100%, 10%, 1%, 0.5%,

0.1%, shown in the columns of Table 3.8). Each subset includes the smaller subsets (e.g. 10%

subset includes the 1% subset and 1% includes 0.5%). We generated 3 versions of the subsets

using diferent random seeds and reported the mean and standard deviation F1 score. The goal of

this study is to discover what are the minimum training data needed for these models to perform

well on the test dataset.

RQ3: We prepared two experiments for this RQ. In the frst experiment, we created a dataset

from Big-Vul to evaluate how well the models generalize to unseen projects. This dataset consists

of the mixed-project and cross-project two settings. To set up the mixed-project setting, we held

out 10k randomly selected examples for the validation and test sets and used the rest for training,

similar to the original method of partitioning the dataset. The training set and test set can and

often do contain examples from the same project, though individual examples will not be

duplicated between the two sets. To set up the cross-project setting, we held out 10k examples

from randomly selected projects in Big-Vul for the validation and test sets, and used the rest of

the projects for training. The projects in the test set are distinct from the projects in the training

set. To mitigate the potential bias caused by the selection of projects, we repeated this process 5

5We used DeepSpeed profler to measure MACs [44]. https://www.deepspeed.ai

https://www.deepspeed.ai

59

times with diferent selections of the cross-project data and report the results of 5-fold cross

validation.

In order to further evaluate generalization to unseen projects, we applied DeepDFA on buggy

and patched programs from DbgBench [9]. DbgBench consists of a set of real-world C programs

with bugs, which were analyzed and fxed by professional software engineers. The DbgBench

programs are distinct from the programs in the Big-Vul dataset. We labeled the buggy functions

using the fault locations documented in DbgBench; these were labeled by the consensus of

multiple developers and were manually checked for correctness, and thus are more reliable than

Big-Vul’s labeling process based on bug-fxing commits. We included all functions which had a

bug location marked as “buggy” and their corresponding patched versions in our study. We

excluded the bugs marked as “Functional” because these bugs cannot be detected without

program-specifc bug constraints. We only included the patched versions which were modifed by

the developers’ fxes, taking the frst correct6 developer patch which could be applied to the

program. We included only one patch to reduce the efects of code duplication, which can unfairly

bias test performance [5]. Since the models only view the function-level context, they will not

produce a diferent prediction on the functions which were not modifed by the patch. We also

excluded 8 examples which could not be processed by Joern in order to fairly compare the

models’ performance scores. This resulted in a dataset of 22 programs: 17 buggy + 5 patched. We

evaluated the checkpoints trained from 3 random seeds in Section 3.5.3 and report the mean

performance scores.

Ablation study: We ran two ablation settings for each of the four abstract datafow embedding

features, resulting in eight settings: (1) using one feature at a time and (2) using three features at

a time (leaving one out). In each setting, we trained DeepDFA on the Big-Vul [22] training

dataset, and then evaluated on the Big-Vul test dataset and DbgBench [9].

Baselines: We compared against 7 non-transformer models: VulDeePecker, SySeVR, Draper,

Devign, ReVeal, ReGVD, IVDetect, and 4 large language models: CodeBERT, LineVul,

6Marked in DbgBench as “Developer fx” or “Diferent but Correct Fix”, e.g. https://github.com/dbgbench/
dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md

https://github.com/dbgbench/dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md
https://github.com/dbgbench/dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md

60

Table 3.3: DeepDFA outperformed the baselines and can be used to further improve the existing
model performance. All scores are reported as Mean (Standard deviation). Note that VulDeePecker,
SySeVR, Draper, and IVDetect performance were directly taken from the IVDetect paper [35], so
we do not report the variance.

Table 3.4: Comparison with non-transformerTable 3.5: Comparison with transformer models.
models.

Model F1 Precision Recall Model F1 Precision Recall

VulDeePecker 12.00 49.00 19.00 CodeBERT 21.04 68.48 12.91
(6.72) (11.76) (5.51)SySeVR 15.00 74.00 27.00

CodeT5 45.61 56.47 38.56Draper 16.00 48.00 24.00
(0.71) (6.22) (2.45)

ReGVD 19.15 63.67 11.33
LineVul 93.23 97.32 89.48(2.65) (4.43) (1.94)

(0.31) (0.66) (0.42)
IVDetect 23.00 72.00 35.00

UniXcoder 95.11 96.96 93.34
Devign 26.85 29.00 25.03 (0.21) (1.14) (1.23)

(0.97) (0.38) (1.67)
DeepDFA 68.26 53.98 92.81

ReVeal 32.94 34.27 31.73 (0.16) (0.06) (0.40)
(0.75) (1.58) (0.65)

DeepDFA 81.39 94.23 71.67
DeepDFA 68.26 53.98 92.81 +CodeT5 (0.96) (2.98) (1.09)

(0.16) (0.06) (0.40)
DeepDFA 96.40 98.69 94.22
+LineVul (0.13) (0.28) (0.46)

DeepDFA 96.46 97.82 95.14
+UniXcoder (0.09) (0.99) (1.09)

UniXcoder, and CodeT5 7 . These models were developed recently with diverse architectures, and

they represent the state-of-the-art of vulnerability detection models [48]. See Section 3.7 for an

overview of the models and Section 3.A in the supplementary materials for the details of our

reproductions.

61

3.5.3 Efectiveness

Comparison with non-transformer models: In Table 3.4, we show that DeepDFA performed

much better than the baseline models on F1 score and recall. DeepDFA’s score was 47.51 higher

than the average F1 score computed over all the baselines. In addition, compared to the other 6

models, DeepDFA reported lower variances for all the three metrics. This indicates that DeepDFA

was more robust to random noise throughout training, and thus more likely to perform as

expected after training.

The results show that our abstract datafow embedding indeed encodes useful information for

vulnerability detection, despite the fact that the node representation is small and the graph is

simple. It is more efective than property graphs (a combination of AST, CFG, and PDG) used in

Devign and Reveal. These baseline models represented nodes using unsupervised word

embeddings [40, 34, 43], which do not have a direct relationship with vulnerabilities. In contrast,

DeepDFA’s node representation encodes the datafow sets of reaching defnitions, related to the

root causes of vulnerabilities.

Comparison with transformer models: We compared DeepDFA with CodeBERT, LineVul,

UniXcoder, and CodeT5 – the state-of-the-art among the transformer language models we

evaluated. (see Section 3.C for the performances of all the baseline models). Table 3.5 shows that

DeepDFA performed considerably better than CodeBERT and CodeT5 in F1 score and had the

smallest variance (among all the models) between runs.

Although UniXcoder and LineVul performed better than DeepDFA in terms of F1 score,

DeepDFA’s embedding can be combined with UniXcoder and LineVul to further improve their

performance. We achieved state-of-the-art performance on all three metrics by adding DeepDFA’s

embedding to UniXcoder, with an F1 score of 96.46 (1.35 improvement), a Precision score of

97.82 (0.86 improvement), and a Recall score of 95.14 (1.80 improvement). Adding DeepDFA’s

embedding improved CodeT5 considerably – by 35.78 F1 score – and improved LineVul by 3.17

7We could not reproduce LineVD and ContraFlow on Big-Vul for function-level vulnerability detection.

62

Table 3.6: Results of statistical tests for model comparison.

Models compared χ2 statistic p-value

LineVul vs. DeepDFA+LineVul 20.0 2.77 × 10−7

UniXcoder vs. DeepDFA+UniXcoder 25.0 5.35 × 10−4

F1 score. We used McNemar’s signifcance test, as recommended by Dietterich [18], to confrm

that the diferences in performance were statistically signifcant (p < 0.05; see Table 3.6).

DeepDFA does not use any text-/token-level information such as variable and function names,

yet it has achieved excellent performance. We believe that leveraging the domain-specifc

algorithm of reaching defnition analysis to guide graph learning indeed plays an important role

and that the embedding indeed encodes semantic features (e.g., data relations) that are important

for vulnerability detection. The fact that DeepDFA can further improve the top-performing LLMs

indicates that LLMs, which exclusively leverage text information, may not sufciently learn the

datafow of code; DeepDFA thus provides the complementary information for vulnerability

detection. We further believe that the examples which DeepDFA predicted incorrectly could be

attributed to the fact that reaching defnition analysis cannot handle all types of vulnerabilities.

Thus, by adding other datafow analyses such as live variable analysis, DeepDFA could further

improve its performance. We will leave such an investigation to our future work.

RQ1 result: DeepDFA performed much better than all non-transformer baselines. When

combined with transformer models, it achieved the highest SOTA score on all metrics.

3.5.4 Efciency

Efciency of computational resources: In Table 3.7, we present the runtime comparison of

DeepDFA, LineVul, and UniXcoder. Here, we did not list other models because their

performances are much worse (shown in Table 3.3), and they took hours to train (see Section 3.D

in the supplementary material), compared to DeepDFA which fnished training in 9 minutes

63

Table 3.7: Training and inference time of DeepDFA and baselines. DeepDFA’s training/inference
time was faster than the baselines.

Inference cost per example

Model Train time (ms) GPU (ms) CPU (ms) MACs

LineVul 10h19m 11.1 1068.2 48.32 B
DDFA+LV 10h40m 15.4 1571.5 48.32 B
UniXcoder 11h16m 9.5 486.0 48.32 B
DDFA+UXC 13h22m 13.3 922.1 48.32 B
DeepDFA 9m 4.6 5.8 40.27 M

(excluding data preprocessing time). In Section 3.E, we also listed the sizes of the models in terms

of the number of parameters.

Compared to UniXcoder, DeepDFA took 75x less time to train, 2x faster inference on GPU,

and 84x faster inference on CPU. DeepDFA had the least parameters of all models, equal to 67%

of the smallest model (ReVeal) and 0.3% of the highest-performing baseline model (UniXcoder).

These results consistently indicate that DeepDFA excels in its efciency compared to other

models. This is possible because DeepDFA is based on the datafow analysis’s compact

representation – bitvector, which captures the relevant semantic information in bits and thus is

more efcient compared to tokenized strings. DeepDFA propagated information along only the

domain-specifc CFG edges, rather than associating every pair of tokens in an exhaustive fashion.

DeepDFA’s short inference time due to a low number of MAC operations enables its use in

non-GPU environments (which are common for software development) where large language

models may not be easily deployed. DeepDFA’s short training time enables techniques like

per-project fne-tuning and hyperparameter tuning, which would be much more costly with the

LLMs’ training times of over 10 hours. Because of DeepDFA’s small parameter count, it is ideal

for resource-limited computing platforms such as mobile devices, where large models cannot be

used [30].

Efciency on training data: In Table 3.8, we report the performance of DeepDFA over reduced

training dataset sizes, compared to the SOTA models, LineVul and UniXcoder. The columns “#

64

Table 3.8: Performance of DeepDFA and baselines on limited data. DeepDFA retained its perfor-
mance on limited data.

F1

Portion # data # vul LineVul UniXcoder DeepDFA

0.1% 151 11 29.75 4.36 55.24
0.5% 755 56 77.69 79.37 68.17
1.0%
10.0%
100.0%

1,510
15,091
150,908

90
885

8,736

84.62
86.67
93.23

79.60
92.53
95.11

68.40
68.44
68.26

data” and “# vul” list the number of training examples in each subset and, of these, the number

of vulnerable examples. The results show that DeepDFA maintained a stable performance across

small dataset sizes, even with only 0.1% of the training dataset, using only 151 training examples.

In contrast, LineVul and UniXcoder steadily dropped in performance as the size of the training

dataset decreased. At 0.1% data, LineVul’s mean performance was only 29.75 in F1 and

UniXcoder’s was 4.36.

For project-specifc training in applications within a single development team, a model which

can learn efciently from a small dataset is useful.

We believe that our model’s stable performance over the reduced dataset and good

performance with very small training datasets demonstrate the advantage of the small models and

the efectiveness of domain-specifc algorithms to guide model learning. DeepDFA is less prone to

overftting to datasets of limited size since it has fewer parameters than LineVul [8]. On the other

hand, the transformer models require a large corpus of programs to learn the patterns among the

unstructured token data.

RQ2 result: DeepDFA was considerably faster than the baselines; it took 9 minutes to train,

4.64 milliseconds for inference on GPU, and 5.8 milliseconds for inference on CPU. DeepDFA

retained stable performance as the training dataset size was reduced. In a low-data scenario,

DeepDFA outperformed LineVul and UniXcoder by 25.49 and 50.88 points F1 score.

65

Table 3.9: How do the models handle unseen projects? Note the performance drop (∆F1) from the
cross-project to mixed-project setting.

Model Mixed F1 Cross F1 ∆F1

LineVul 84.03 71.37 -12.66
UniXcoder 86.30 76.72 -9.58
DeepDFA 70.49 68.58 -1.91
DeepDFA+LineVul 87.89 71.88 -16.02
DeepDFA+UniXcoder 89.85 78.07 -11.77

3.5.5 Generalization

Cross-project evaluation on Big-Vul: We compared the models’ F1 scores on the

cross-project (shown as Cross F1) and mixed-project (shown as Mixed F1) settings to evaluate the

models’ capabilities of generalizing over unseen projects. Table 3.9 presents the

highest-performing baseline models, LineVul and UniXcoder, compared to DeepDFA (the results

of the other baseline models are available in the supplementary material, Section 3.F). Among the

most important metrics, ∆F1 shows how performance changes when the model is applied to

unseen projects. Shown under Column ∆F1, DeepDFA only dropped 1.91 (2.7%) F1 score,

compared to 12.66 (15.1%) drop for LineVul and 9.58 (11.1%) drop for UniXcoder.

DeepDFA+UniXcoder reported the best performance for both the mixed-project and

cross-project settings, improving on UniXcoder’s mean F1 score by 3.55 and 1.35 points

respectively; DeepDFA+LineVul also improved LineVul’s F1 score in both settings.

Applying to DbgBench: In Table 3.10, we report our experience of applying deep learning

tools to real-world bug benchmarks. DeepDFA detected 8.7 out of 17 total bugs on average across

3 runs. DeepDFA also correctly predicted non-vulnerable for 3 out of 5 patched programs. On the

other hand, neither of the competing LLMs, LineVul and UniXcoder, detected any bugs and in

fact both models reported all programs as non-vulnerable with high confdence. This implies that

these models were heavily biased to predict all examples in DbgBench as non-vulnerable. With

the addition of DeepDFA, DeepDFA+LineVul and DeepDFA+UniXcoder’s generalization greatly

improved, yet they did not perform as well overall as DeepDFA alone. It should be noted that the

66

Table 3.10: Generalization performance of DeepDFA and baselines. DeepDFA generalized to real-
world bugs in DbgBench. Results are averaged over checkpoints from 3 random seeds. Buggy/-
Patched columns show the number of correct predictions on buggy/patched programs respectively.

Model Buggy Patched Accuracy F1

LineVul 0.0 5.0 22.73 0.00
DeepDFA+LineVul 9.0 1.3 46.97 60.67
UniXcoder 0.0 5.0 22.73 0.00
DeepDFA+UniXcoder 9.0 1.3 46.97 60.67
DeepDFA 8.7 3.0 53.03 64.29

Total 17.0 5.0 - -

bugs in DbgBench are very complex and took human experts hours to diagnose [9]. In the past,

we have tried a variety of static analysis tools, such as Cppcheck8 and Polyspace9 , to detect bugs

in DbgBench, but we have not detected any of these bugs.

We believe that DeepDFA generalizes better because it does not rely on spurious features that

may exist at token and text level, such as variable names and function names, as reported by

previous research [13]. These spurious features are no longer correlated with vulnerabilities in

unseen projects, as their input tokens will likely change. Our abstract datafow embedding

encodes the usage patterns of commonly used API calls, operators, constants, and data types.

Such patterns can be extracted from unseen text and are directly related to the cause of the

vulnerabilities, and thus might help DeepDFA generalize better over unseen projects.

RQ3 result: DeepDFA had the smallest drop in F1 score (∆ F1) when applying to the

vulnerabilities in the projects that are not seen in training datasets. DeepDFA was able

to detect complex bugs in DbgBench and was able to distinguish the buggy and patched

versions. The SOTA models, LineVul and UniXcoder, did not detect any bugs in DbgBench.

67

Table 3.11: Ablation study evaluated on DbgBench.

Feature set Buggy Patched Acc F1

DeepDFA 8.7 3.0 53.03 64.29

API only 7.7 3.0 48.48 57.50
Datatype only 8.0 3.0 50.00 59.26
Literal only 7.7 3.0 48.48 57.50
Operator only 7.7 3.0 48.48 57.50

Api+datatype+literal 8.0 3.0 50.00 59.26
Api+datatype+operator 8.0 3.0 50.00 59.26
Api+literal+operator 8.0 3.0 50.00 59.26
Datatype+literal+operator 8.0 3.0 50.00 59.26

Total 17.0 5.0 - -

3.5.6 Ablation studies

Table 3.11 shows the model’s performance on DbgBench. The model detected the most bugs

when using all four features compared to other ablation settings. When using only one feature at

a time, the model consistently missed 1-2 bugs which were detected by DeepDFA. When using

three features at a time (leaving one out), the model still consistently failed to detect 1 bug which

was detected by DeepDFA.

Table 3.12 shows the model’s performance on the Big-Vul test dataset. DeepDFA (integrating

all the four features) performed the best out of all confgurations. When testing one feature at a

time, datatype by itself performed better than the other 3 features alone. When we used the

combined feature sets, the model performed better than using only one feature.

3.6 Threats to Validity and Discussions

Threats: We evaluated performance primarily on the Big-Vul dataset because this dataset was

supported by all the baseline models. Compared to the Devign dataset, Big-Vul is imbalanced and

can better refect a real-world vulnerability detection scenario. However, Big-Vul’s data collection

8https://cppcheck.sourceforge.io/
9https://www.mathworks.com/products/polyspace.html

https://cppcheck.sourceforge.io/
https://www.mathworks.com/products/polyspace.html

68

Table 3.12: Ablation study evaluated on the Big-Vul test dataset.

Feature set F1 Precision Recall

DeepDFA 68.26
(0.16)

53.98
(0.06)

92.81
(0.40)

Datatype only 68.04
(0.19)

53.83
(0.31)

92.46
(0.30)

Literal only 62.50
(0.81)

50.52
(1.83)

82.46
(7.26)

Operator only 64.47
(0.33)

52.82
(1.59)

82.98
(4.90)

API only 63.67
(0.45)

50.66
(2.36)

86.14
(5.58)

API + datatype + literal 68.18
(0.10)

54.06
(0.13)

92.28
(0.15)

API + datatype + operator 68.16
(0.13)

54.03
(0.18)

92.28
(0.15)

API + literal + operator 68.11
(0.14)

53.98
(0.20)

92.28
(0.15)

Datatype + literal + operator 68.12
(0.20)

54.04
(0.11)

92.11
(0.46)

process based on bug-fxing commits can introduce label noise and selection bias and as a result,

the evaluation could fail to represent real-world performance. To address the selection bias, we

studied settings which refect more realistic scenarios with reduced training datasets and

cross-project generalization; to address the label noise, we evaluated the models on additional

real-world bugs collected in DbgBench, which were labeled by developers and manually checked.

The performances reported in RQ1, RQ2, and RQ3 will be afected by the random noise in

the model training and, for RQ2, dataset selection. To mitigate this efect, we generated 3

versions of the subsets using diferent random seeds and reported the mean performance.

69

The mixed-project and cross-project performance reported in RQ3 will be afected by the

random selection of projects in the training/held-out datasets. To mitigate this efect, we

performed 5-fold cross-validation and reported the mean performance.

Discussions: We believe our approach can be extended to bit-vector datafow problems [29, 45].

All problems in this category contain a fnite set of datafow facts and have the same form of

transfer functions and meet operators (see Equations (3.1) and (3.2)). For example, live variables

and available expressions [45] are bit-vector problems that are important for vulnerability

detection [12]. We believe a new datafow analysis can be integrated by: (1) defning an abstract

datafow embedding which can capture the datafow set of the analysis, (2) confguring the neural

network used as the aggregate function in GGNN to better simulate the meet operator (based on

whether it is a union or intersection operation), and (3) reversing the CFG edges for backward

datafow problems (as reaching defnition is a forward datafow problem).

3.7 Related Work

Many works have used GNN for vulnerability detection [6, 51, 19, 21, 14, 10, 42]. In several

recent approaches, Devign [56], ReVeal [13], IVDetect [35], and LineVD [28] used GNN on

program graph representations such as AST, CFG, and PDG, and annotated the nodes with

unsupervised or pretrained word embeddings. The novelty of our work is a bit-vector inspired

abstract datafow embedding based on the analogy of graph learning and DFA algorithms.

Transformer models such as CodeBERT [23], LineVul [24], and UniXcoder [26] used a

token-based program representation pretrained on a large body of NL-PL pairs, and then

fne-tuned for vulnerability detection. Using CFGs, our graph learning only propagates the

information along semantically important edges instead of trying to learn the relations of each

pair of tokens. Thus, our approach is substantially more efcient. Since we have used a

semantic-based embedding, we show that we can improve the performance of token based models.

The most recent work, ContraFlow [15], learns embeddings of def-use paths (an output of

70

datafow analysis), then predicts vulnerability detection using a transformer model. Our work

directly emulates datafow analysis and does not require an expensive pretraining phase.

There were also models that used sequence and CNN architectures. VulDeePecker [38] used

BiLSTM on slices considering data dependencies. SySeVR [37] used BiGRU on slices and adds

data dependencies. Draper [46] used CNN and Random Forest. However, none of these models

integrates datafow analysis in its algorithm.

Cummins et al. [17] formulated datafow analyses as supervised learning tasks and applied it

for device mapping and algorithm classifcation; we discuss the diferences from our work in-depth

in Section 3.3.3. Other relevant work that explores datafow analysis and deep learning include:

(1) VenkataKeerthy et al. [50] used the output of datafow analysis, reaching defnitions and live

variables, to learn fow-aware embeddings; and (2) Bielik et al. [7] and Jeon et al. [32] learned

static analysis formulas from a dataset based on a fxed language. None of these works aims to

develop a model for vulnerability detection.

3.8 Conclusions and Future Work

We propose DeepDFA, an efcient graph learning framework and embedding technique for

vulnerability detection. Our abstract datafow embedding leverages the idea of bit-vector in

datafow analysis and integrates data usage patterns from semantic features: commonly used API

calls, operations, constants, and data types that potentially capture the causes of the

vulnerabilities. DeepDFA emulates the Kildall method of datafow analysis using the analogous

message-passing algorithm. Our experimental results show that DeepDFA is very efcient. It is

trained in 9 minutes and used only 50 vulnerable examples to achieve its top performance. Yet, it

still outperformed all non-transformer baselines and generalized the best among all the models.

DeepDFA found bugs in real-world programs from DbgBench while neither of the

highest-performing baselines, LineVul and UniXcoder, detected any bugs. Importantly, DeepDFA

can be used to improve other models. By combining DeepDFA with the top performing models,

we surpassed the state-of-the-art performance for vulnerability detection.

71

In the future, we plan to incorporate other datafow analyses, e.g., live variable analysis, that

have been used for or vulnerability detection [12]. We also plan to explore the application of

explanation tools to precisely pinpoint the vulnerability location at specifc lines in the code, and

evaluate our framework on detecting vulnerabilities in other programming languages.

3.9 Acknowledgements

We thank the anonymous reviewers for their valuable feedback. This research is partially

supported by the U.S. National Science Foundation (NSF) under Awards #1816352 and

#2313054.

3.10 Bibliography

[1] Browse vulnerabilities by date. https://web.archive.org/web/20211014235218/https:

//www.cvedetails.com/browse-by-date.php, 2021. Accessed November 5 2021.

[2] IBM Cost of a Data Breach Report 2021, 2021. Accessed October 29 2021.

[3] Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-W. Unifed pre-training for

program understanding and generation. In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies (Online, June 2021), K. Toutanova, A. Rumshisky, L. Zettlemoyer,

D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.,

Association for Computational Linguistics, pp. 2655–2668.

[4] Aho, A. V., Lam, M. S., Sethi, R., and Ullman, J. D. Compilers: Principles,

Techniques, and Tools (2nd Edition). Addison-Wesley Longman Publishing Co., Inc., USA,

2006.

https://web.archive.org/web/20211014235218/https://www.cvedetails.com/browse-by-date.php
https://web.archive.org/web/20211014235218/https://www.cvedetails.com/browse-by-date.php

72

[5] Allamanis, M. The adverse efects of code duplication in machine learning models of code.

In Proceedings of the 2019 ACM SIGPLAN International Symposium on New Ideas, New

Paradigms, and Refections on Programming and Software (New York, NY, USA, 2019),

Onward! 2019, Association for Computing Machinery, p. 143–153.

[6] Allamanis, M., Brockschmidt, M., and Khademi, M. Learning to represent programs

with graphs. In International Conference on Learning Representations (2018).

[7] Bielik, P., Raychev, V., and Vechev, M. Learning a static analyzer from data. In

Computer Aided Verifcation: 29th International Conference, CAV 2017, Heidelberg,

Germany, July 24-28, 2017, Proceedings, Part I 30 (2017), Springer, pp. 233–253.

[8] Bishop, C. M. Pattern Recognition and Machine Learning. Springer, 2006.

[9] Böhme, M., Soremekun, E. O., Chattopadhyay, S., Ugherughe, E., and Zeller,

A. Where is the bug and how is it fxed? an experiment with practitioners. In Proceedings of

the 11th Joint meeting of the European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software Engineering (2017), ESEC/FSE 2017,

pp. 1–11.

[10] Cao, S., Sun, X., Bo, L., Wei, Y., and Li, B. BGNN4VD: Constructing bidirectional

graph neural-network for vulnerability detection. Information and Software Technology 136,

C (Aug. 2021).

[11] Cao, S., Sun, X., Bo, L., Wu, R., Li, B., and Tao, C. MVD: Memory-Related

Vulnerability Detection Based on Flow-Sensitive Graph Neural Networks. arXiv:2203.02660

(Mar 2022). arXiv: 2203.02660.

[12] Cesare, S. Bugalyze.com - Detecting Bugs Using Decompilation and Data Flow Analysis.

In BlackHat USA (2013), p. 9.

https://Bugalyze.com

73

[13] Chakraborty, S., Krishna, R., Ding, Y., and Ray, B. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering 48,

09 (Sept. 2022), 3280–3296.

[14] Cheng, X., Wang, H., Hua, J., Xu, G., and Sui, Y. DeepWukong: Statically detecting

software vulnerabilities using deep graph neural network. ACM Transactions on Software

Engineering Methodology 30, 3 (Apr 2021), 38:1–38:33.

[15] Cheng, X., Zhang, G., Wang, H., and Sui, Y. Path-sensitive code embedding via

contrastive learning for software vulnerability detection. In Proceedings of the 31st ACM

SIGSOFT International Symposium on Software Testing and Analysis (New York, NY, USA,

2022), ISSTA 2022, Association for Computing Machinery, p. 519–531.

[16] Cranmer, M., Sanchez Gonzalez, A., Battaglia, P., Xu, R., Cranmer, K.,

Spergel, D., and Ho, S. Discovering symbolic models from deep learning with inductive

biases. In Advances in Neural Information Processing Systems (2020), H. Larochelle,

M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33, Curran Associates, Inc.,

pp. 17429–17442.

[17] Cummins, C., Fisches, Z. V., Ben-Nun, T., Hoefler, T., O’Boyle, M. F. P., and

Leather, H. ProGraML: A graph-based program representation for data fow analysis and

compiler optimizations. In Proceedings of the 38th International Conference on Machine

Learning (18–24 Jul 2021), vol. 139 of PMLR ’21, pp. 2244–2253.

[18] Dietterich, T. G. Approximate Statistical Tests for Comparing Supervised Classifcation

Learning Algorithms. Neural Computation 10, 7 (Oct 1998), 1895–1923.

[19] Dinella, E., Dai, H., Li, Z., Naik, M., Song, L., and Wang, K. Hoppity: Learning

graph transformations to detect and fx bugs in programs. In Proceedings of the International

Conference on Learning Representations (2020).

74

[20] Ding, Y., Suneja, S., Zheng, Y., Laredo, J., Morari, A., Kaiser, G., and Ray, B.

VELVET: a novel ensemble learning approach to automatically locate vulnerable statements.

In Proceedings of the 2022 IEEE International Conference on Software Analysis, Evolution

and Reengineering (Los Alamitos, CA, USA, Mar 2022), SANER ’22, IEEE Computer

Society, pp. 959–970.

[21] Du, X., Chen, B., Li, Y., Guo, J., Zhou, Y., Liu, Y., and Jiang, Y. Leopard:

Identifying vulnerable code for vulnerability assessment through program metrics. In

Proceedings of the 41st International Conference on Software Engineering (2019), ICSE ’19,

IEEE Press, p. 60–71.

[22] Fan, J., Li, Y., Wang, S., and Nguyen, T. N. A C/C++ code vulnerability dataset

with code changes and CVE summaries. In Proceedings of the 17th International Conference

on Mining Software Repositories (New York, NY, USA, 2020), MSR ’20, Association for

Computing Machinery, p. 508–512.

[23] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,

Liu, T., Jiang, D., and Zhou, M. CodeBERT: A pre-trained model for programming and

natural languages. In Findings of the Association for Computational Linguistics: EMNLP

2020 (Online, Nov. 2020), T. Cohn, Y. He, and Y. Liu, Eds., Association for Computational

Linguistics, pp. 1536–1547.

[24] Fu, M., and Tantithamthavorn, C. LineVul: A transformer-based line-level

vulnerability prediction. In Proceedings of the 19th International Conference on Mining

Software Repositories (New York, NY, USA, 2022), MSR ’22, Association for Computing

Machinery, p. 608–620.

[25] Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and Dahl, G. E. Neural

message passing for quantum chemistry. In Proceedings of the 34th International Conference

on Machine Learning - Volume 70 (2017), ICML ’17, JMLR.org, p. 1263–1272.

https://JMLR.org

75

[26] Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin, J. UniXcoder: Unifed

cross-modal pre-training for code representation. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers) (Dublin, Ireland,

May 2022), S. Muresan, P. Nakov, and A. Villavicencio, Eds., Association for Computational

Linguistics, pp. 7212–7225.

[27] Hanif, H., and Maffeis, S. VulBERTa: Simplifed source code pre-training for

vulnerability detection. In Proceedings of the 2022 International Joint Conference on Neural

Networks (2022), IJCNN ’22, pp. 1–8.

[28] Hin, D., Kan, A., Chen, H., and Babar, M. A. LineVD: Statement-level vulnerability

detection using graph neural networks. In Proceedings of the 19th International Conference

on Mining Software Repositories (New York, NY, USA, 2022), MSR ’22, Association for

Computing Machinery, p. 596–607.

[29] Horwitz, S. Datafow analysis. CS704 Lecture Notes [Accessed 19-09-2023].

[30] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T.,

Andreetto, M., and Adam, H. MobileNets: Efcient convolutional neural networks for

mobile vision applications, 2017.

[31] Japkowicz, N. The class imbalance problem: Signifcance and strategies. In Proceedings of

the International Conference on Artifcial Intelligence (2000), vol. 56, pp. 111–117.

[32] Jeon, M., Jeong, S., Cha, S., and Oh, H. A machine-learning algorithm with disjunctive

model for data-driven program analysis. ACM Transactions Programming Language Systems

41, 2 (Jun 2019).

[33] Kildall, G. A. A unifed approach to global program optimization. In Proceedings of the

1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Programming Languages

(New York, NY, USA, 1973), POPL ’73, Association for Computing Machinery, p. 194–206.

76

[34] Le, Q., and Mikolov, T. Distributed representations of sentences and documents. In

Proceedings of the 31st International Conference on Machine Learning (Bejing, China, 22–24

Jun 2014), E. P. Xing and T. Jebara, Eds., vol. 32 of Proceedings of Machine Learning

Research, PMLR, pp. 1188–1196.

[35] Li, Y., Wang, S., and Nguyen, T. N. Vulnerability detection with fne-grained

interpretations. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (New

York, NY, USA, 2021), ESEC/FSE 2021, Association for Computing Machinery, pp. 292–303.

[36] Li, Y., Zemel, R., Brockschmidt, M., and Tarlow, D. Gated graph sequence neural

networks. Proceedings of the 4th International Conference on Learning Representations, 1

(2016), 1–20.

[37] Li, Z., Zou, D., Xu, S., Jin, H., Zhu, Y., and Chen, Z. SySeVR: A Framework for

Using Deep Learning to Detect Software Vulnerabilities . IEEE Transactions on Dependable

and Secure Computing 19, 04 (July 2022), 2244–2258.

[38] Li, Z., Zou, D., Xu, S., Ou, X., Jin, H., Wang, S., Deng, Z., and Zhong, Y.

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection. In Proceedings of

the Network and Distributed System Security Symposium (2018), NDSS ’18, Internet Society.

[39] Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement,

C. B., Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L.,

Tufano, M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S. K., Fu, S.,

and Liu, S. CodeXGLUE: A machine learning benchmark dataset for code understanding

and generation. CoRR abs/2102.04664 (2021).

[40] Mikolov, T., Chen, K., Corrado, G., and Dean, J. Efcient estimation of word

representations in vector space. arXiv: 1301.3781.

77

[41] Moshtari, S., Okutan, A., and Mirakhorli, M. A grounded theory based approach to

characterize software attack surfaces. In Proceedings of the 44th International Conference on

Software Engineering (New York, NY, USA, 2022), ICSE ’22, Association for Computing

Machinery, p. 13–24.

[42] Nguyen, V.-A., Nguyen, D. Q., Nguyen, V., Le, T., Tran, Q. H., and Phung, D.

ReGVD: Revisiting graph neural networks for vulnerability detection. In Deep Learning for

Code Workshop (2022).

[43] Pennington, J., Socher, R., and Manning, C. Glove: Global Vectors for Word

Representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural

Language Processing (EMNLP) (Doha, Qatar, 2014), Association for Computational

Linguistics, pp. 1532–1543.

[44] Rasley, J., Rajbhandari, S., Ruwase, O., and He, Y. DeepSpeed: System

optimizations enable training deep learning models with over 100 billion parameters. In

Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &

Data Mining (New York, NY, USA, 2020), KDD ’20, Association for Computing Machinery,

p. 3505–3506.

[45] Reps, T., Horwitz, S., and Sagiv, M. Precise interprocedural datafow analysis via

graph reachability. In Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (New York, NY, USA, Jan. 1995), POPL ’95,

Association for Computing Machinery, pp. 49–61.

[46] Russell, R., Kim, L., Hamilton, L., Lazovich, T., Harer, J., Ozdemir, O.,

Ellingwood, P., and McConley, M. Automated vulnerability detection in source code

using deep representation learning. 17th IEEE International Conference on Machine

Learning and Applications (2018), 757–762. Publisher: IEEE.

78

[47] Seabold, S., and Perktold, J. statsmodels: Econometric and statistical modeling with

python. In 9th Python in Science Conference (2010).

[48] Steenhoek, B., Rahman, M. M., Jiles, R., and Le, W. An empirical study of deep

learning models for vulnerability detection. In Proceedings of the 45th International

Conference on Software Engineering (2023), ICSE ’23, IEEE Press, p. 2237–2248.

[49] Tan, M., and Le, Q. EfcientNet: Rethinking model scaling for convolutional neural

networks. In Proceedings of the 36th International Conference on Machine Learning (09–15

Jun 2019), vol. 97 of Proceedings of Machine Learning Research, PMLR, pp. 6105–6114.

[50] VenkataKeerthy, S., Aggarwal, R., Jain, S., Desarkar, M. S., Upadrasta, R.,

and Srikant, Y. N. IR2VEC: LLVM IR based scalable program embeddings. ACM

Transactions on Architectural Code Optimization 17, 4 (Dec 2020).

[51] Wang, Y., Gao, F., Wang, L., and Wang, K. Learning a Static Bug Finder from Data.

arXiv:1907.05579 (Mar 2020). arXiv: 1907.05579.

[52] Wikipedia. List of data breaches.

https://web.archive.org/web/20211011144237/https:

//en.wikipedia.org/wiki/List_of_data_breaches, Oct 2021. Accessed October 29 2021.

[53] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. How powerful are graph neural

networks? In International Conference on Learning Representations (2019).

[54] Yamaguchi, F., Golde, N., Arp, D., and Rieck, K. Modeling and discovering

vulnerabilities with code property graphs. Proceedings of the IEEE Symposium on Security

and Privacy (2014), 590–604.

https://web.archive.org/web/20211011144237/https://en.wikipedia.org/wiki/List_of_data_breaches
https://web.archive.org/web/20211011144237/https://en.wikipedia.org/wiki/List_of_data_breaches

79

[55] Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E., Yang, B., Laredo, J.,

Morari, A., and Su, Z. D2A: A dataset built for ai-based vulnerability detection methods

using diferential analysis. In Proceedings of the ACM/IEEE 43rd International Conference

on Software Engineering: Software Engineering in Practice (New York, NY, USA, 2021),

ICSE-SEIP ’21, Association for Computing Machinery.

[56] Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. Devign: Efective vulnerability

identifcation by learning comprehensive program semantics via graph neural networks.

Advances in Neural Information Processing Systems 32 (2019).

80

3.A Appendix: Baseline reproductions

• We could not reproduce VulDeePecker, SySeVR, Draper, or IVDetect, so we repeated the

performances reported in Li et al. [35]. Their measurements may vary slightly from our

reproduction.

• We confrmed with Chakraborthy et al. [13] that our results fxed a data leakage bug in the

original implementation, so the results we report may difer from the original paper.

• Zhou et al. [56] did not release their model code, so we reproduced Devign from the

third-party implementation released by Chakraborthy et al. [13]

(https://github.com/saikat107/Devign).

• Hin et al. [28] did not report function-level metrics for LineVD, and we could not reproduce

their statement-level performance from their model code, so we did not compare with their

approach.

• Cheng et al. [15] did not release their model code and evaluated a diferent dataset than

ours, so we did not compare with their approach.

3.B Appendix: Programs that are removed

We excluded a total of 1,564 programs (0.8%) of the Big-Vul dataset, following the

implementation of LineVD10 . Specifcally, the following programs are removed:

• Incomplete functions, i.e., ending with ‘);’, or not ending in ‘}’ or no ‘;’. Joern can fail to

parse such functions.

• Programs where no lines were added or removed, but the function was labeled vulnerable.

• Vulnerable programs where more than 70% of the lines are modifed from the vulnerable to

the fxed version, indicating that a substantial change has been done and the vulnerability

may be changed.
10https://github.com/davidhin/linevd

https://github.com/saikat107/Devign
https://github.com/davidhin/linevd

81

• Programs that are fewer than 5 lines long.

3.C Appendix: Additional efectiveness results

Of the transformer models, we evaluated CodeBERT and LineVul in our experiment for

Section 3.5.3. Table 3.13 reports the performances of the other models.

Table 3.13: Initial trial run of performance on 100% of the Big-Vul dataset.

Model Model type F1 Precision Recall

Devign GNN
29.33
(6.58)

32.83
(5.55)

26.59
(7.25)

ReVeal GNN
33.60
(0.69)

33.08
(3.49)

34.67
(3.80)

ReGVD GNN
24.49
(3.16)

63.76
(3.54)

15.26
(2.71)

CodeBERT Transformer
22.68
(8.12)

67.79
(4.90)

19.11
(3.39)

LineVul Transformer
91.58
(0.49)

95.99
(0.85)

87.55
(0.49)

VulBERTaMLP [27] Transformer
1.75
(3.03)

19.33
(33.49)

0.92
(1.59)

VulBERTaCNN [27] Transformer
10.59
(0.00)

5.59
(0.00)

100.00
(0.00)

PLBART [3] Transformer
25.35
(3.74)

61.84
(6.54)

16.18
(3.52)

3.D Appendix: Training times of all models

Table 3.14 lists the training times of the lower-performing models which we did not report in

Section 3.5.4. These training runs were not performed in the same environment as those in

Section 3.5.4, but they provide an approximate measurement of the training time. We were not

able to reproduce IVDetect, so we do not report its training time.

82

Table 3.14: Approximate training times of all models.

Model Training time

Devign 2h58m
ReVeal 13h20m
ReGVD 5h33m
CodeBERT 7h33m
LineVul 10h19m
DeepDFA+LineVul 10h40m
UniXcoder 11h16m
DeepDFA+UniXcoder 13h22m
CodeT5 27h40m
DeepDFA+CodeT5 27h57m
DeepDFA 9m

3.E Appendix: Model sizes

Table 3.15 lists the size of each model.

Table 3.15: DeepDFA was smallest in terms of parameter count.

Model # parameters

IVDetect 924,165
Devign 1,148,553
ReVeal 560,291
ReGVD 124,794,500
CodeBERT 124,646,401
LineVul 125,238,531
DeepDFA+LineVul 125,679,236
UniXcoder 126,522,627
DeepDFA+UniXcoder 126,963,332
CodeT5 222,883,586
DeepDFA+CodeT5 223,128,195
DeepDFA 375,938

83

3.F Appendix: Additional cross-project evaluation results

We only evaluated LineVul in our experiment for Section 3.5.5 because its absolute

performance was substantially better than the other baseline models in our initial trial. Table 3.16

reports the results of our initial trial.

Table 3.16: Initial trial run of cross-project evaluation with 100% of the dataset.

Model Mixed-project F1 Cross-project F1 ∆F1

LineVul 84.07 71.81 -12.26
Devign
ReVeal

24.32
28.24

14.26
6.83

-10.06
-21.41

ReGVD 33.61 21.70 -11.91
CodeBERT 24.14 4.98 -19.16

84

CHAPTER 4. TRACED: EXECUTION-AWARE PRE-TRAINING FOR

SOURCE CODE

Yangruibo Ding1 , Benjamin Steenhoek2 , Kexin Pei3 , Gail Kaiser4 , Wei Le5 , and Baishakhi Ray6

1,3,4,6 Department of Computer Science, Columbia University, New York, NY, 10027

2,5 Department of Computer Science, Iowa State University, Ames, IA, 50011

Modifed from a manuscript published in the 46th International Conference on Software

Engineering (ICSE 2024)

Abstract

Most existing pre-trained language models for source code focus on learning the static code

text, typically augmented with static code structures (abstract syntax tree, dependency graphs,

etc.). However, program semantics will not be fully exposed before the real execution. Without an

understanding of the program execution, statically pre-trained models fail to comprehensively

capture the dynamic code properties, such as the branch coverage and the runtime variable

values, and they are consequently less efective at code understanding tasks, such as retrieving

semantic clones and detecting software vulnerabilities.

To close the gap between the static nature of language models and the dynamic

characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for

source code. Specifcally, we pre-train code language models with a combination of source code,

executable inputs, and corresponding execution traces. Our goal is to teach code models the

complicated execution logic during the pre-training, enabling the model to statically estimate the

dynamic code properties without repeatedly executing code during task-specifc fne-tuning.

∗ Benjamin led data collection of over 100k execution traces; Yangruibo led model design/evaluation.

85

To illustrate the efectiveness of our proposed approach, we fne-tune and evaluate TRACED

on three downstream tasks: static execution estimation, clone retrieval, and vulnerability

detection. The empirical results show that TRACED relatively improves the statically pre-trained

code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable

value predictions. TRACED also signifcantly outperforms statically pre-trained models in clone

retrieval and vulnerability detection across four public benchmarks. Our data, code, and

pre-trained models are available at https://doi.org/10.6084/m9.figshare.27367989.

4.1 Introduction

Machine Learning (ML) for source code has enabled many software engineering tasks, such as

automated program repair [12, 20, 18, 19], bug fnding [8, 56], and refactoring [7]. Recently, the

common practice of training ML models for source code understanding is based on pre-training a

Transformer-based language model on source code. These approaches treat source code programs

as static text [13, 6, 1, 48], sometimes augmented with program-specifc structures such as

abstract syntax trees and dependency graphs [15, 14, 11, 33], and adapt pre-training strategies for

natural language to learn program representations.

However, many source code understanding tasks require a more comprehensive understanding

of program behavior. For instance, detecting semantic clones [30] involves determining if two

pieces of code behave similarly under similar inputs, even if their structures are apparently

diferent. Likewise, detecting vulnerabilities often requires developers to analyze whether a

potentially problematic location can be executed and what kinds of value fows can expose any

vulnerability. While existing code models are primarily trained to capture static code properties,

they are not efective at reasoning about program behavior. In fact, many of the deeper program

semantics only manifest when the code is executed. As a result, they tend to underperform when

it comes to tasks that require deeper semantic understanding.

https://doi.org/10.6084/m9.figshare.27367989

86

Figure 4.1: A motivating example from CodeNet’s coding challenge No.3597 [40] reveals that stati-
cally pre-trained code language models, regardless of their size, could not reason about the branch
coverage given a specifc input, while TRACED, enhanced with program execution features, cor-
rectly identify the execution path.

Motivating Examples. Figure 4.1 presents an example with simple execution logic to

illustrate the failure of statically pre-trained code models on the branch coverage prediction. We

query three pre-trained code models, CodeX [9] (code-davinci-002), UnixCoder [14], and

TRACED (ours), to predict the branch coverage, according to the given program inputs. For

CodeX, we prompt the model with carefully designed questions, similar to [34], to ask for the

branch coverage prediction in the zero-shot setting. Specifcally, we augment the prompts by

adding comments at the end of lines 12 and 16: // Will this line be executed? Yes or no?.

To give more hints regarding the data fow, we further add a comment at the end of line 10: // A

is -1, since it accepts the second value of the input. Unfortunately, even if provided

with additional hints of the required data fow for branch prediction, CodeX still failed to predict

the correct coverage labels, suggesting it cannot interpret this simple execution.

Besides the zero-shot prompting, we also study whether fne-tuning pre-trained code models

to predict execution can lead to better branch prediction. Specifcally, we fne-tune another

popular pre-trained code model, UnixCoder [14], to predict branch execution while ensuring the

motivation example is not seen during training. From the inference results in Figure 4.1, we notice

87

that UnixCoder cannot predict covered branches even after being fne-tuned. It predicts neither of

the branches will be covered, indicating that it does not have the basic understanding that, for

this specifc example, at least one branch will always be taken on a valid input.

Our approach. To address the limitation of the statically pre-trained code models, we

propose TRACED, an execution-aware pre-training strategy to capture the static and dynamic

perspectives of the source code. Specifcally, we pre-train the Transformer-based language model

with multi-task objectives on predicting source code, program states, and execution coverage,

forcing the model to reason about both program’s runtime behavior and the naturalness of the

source code [42] at the same time. We address several technical challenges, such as representing

program execution states, encoding the runtime variable values, and representing code coverage,

to implement the pre-training strategy.

Representing Program States. During program execution, variables are used to store

data that is used by the program. These variables can have diferent types, such as integers,

foating-point numbers, pointers, and arrays. As the program executes, the values of these

variables change, refecting the changes in the program’s state. Consequently, software developers

typically monitor the variable values, via debugging tools, to observe the execution facts [54] and

understand the dynamic behaviors of the program.

In this work, we defne the program state at a specifc time step of the execution as the set of

values of every defned variable in the current scope. In other words, the program state is

equivalent to the value mapping table of the debugger, which is monitored by the developer when

the program is paused by a specifc breakpoint.

Value Quantization. While the runtime variable values are traced as concrete values,

directly learning them brought challenges to machine learning models. Concrete values span over

a wide range of possible values, especially when considering diferent data types (integers,

foating-point numbers, arrays, pointers, etc.), leading to a high-dimensional, complex, but sparse

88

data distribution. This increased data complexity and sparsity challenges the model to learn

patterns and relationships between the variable values, as it must deal with many unique inputs,

which causes the model to overft and memorize specifc instances rather than generalize to

broader patterns. Additionally, noise, outliers, and irregularities of concrete values also mislead

the model’s learning process. We will empirically demonstrate these limitations in Section 4.6.3.

To decrease the data complexity and increase the density, we defne thirty value categories,

covering a wide range of variable types, to map the continuous but sparse variable values into

discrete bins. We call this process as value quantization, which is similar in design to the

quantization in signal processing1 . This simplifcation potentially helps the model to be more

resilient to noise and outliers, allowing it to focus on learning the underlying execution patterns

and relationships between variables, rather than being sensitive to specifc instances or

irregularities.

Representing Execution Coverage. While program state labels provide important

information about the current state of the program, they do not capture information about how

the program arrived at that state. To boost the training with more comprehensive execution

features, besides the variable values, we also log the execution coverage during the execution, in

terms of which lines are executed and which are not, and construct execution coverage features

for the model to learn.

Results. We fne-tune and evaluate TRACED’s performance using three tasks: static

execution estimation, clone retrieval, and vulnerability detection. On statically predicting the

program executions, TRACED substantially improves the statically pre-trained code models by

12.4% for execution path prediction and by 25.2% for runtime variable value predictions.

TRACED also obtains state-of-the-art results in code understanding tasks: TRACED reports

91.2% MAP@R on CodeXGLUE-POJ104 [30], 50.4% F1 on ReVeal [8], and 65.9% accuracy on

CodeXGLUE-defect-detection [30].

1https://en.wikipedia.org/wiki/Quantization_(signal_processing)

https://en.wikipedia.org/wiki/Quantization_(signal_processing)

89

Contributions. We make the following contributions:

• We present a simplifed and compact representation of program executions, including the

program states and the execution coverage, to efectively guide code models to learn

program semantics and reason about program behavior.

• We propose a novel multi-task pre-training strategy to jointly learn the static and dynamic

code properties. As a result, the pre-trained model with our approach will be empowered

with a decent execution awareness.

• We pre-train TRACED with the proposed trace representation and the execution-aware

strategy and evaluate its performance on several downstream tasks. The experiment results

demonstrate that TRACED signifcantly outperforms the statically pre-trained code

models in these tasks.

• We publicly released our data, code, and pre-trained models at

https://doi.org/10.6084/m9.figshare.27367989.

4.2 Overview

Figure 4.2 shows the overview of TRACED, consisting of three main stages: (1) tracing the

source code and engineering the features, (2) execution-aware pre-training using the program

traces, and (3) loading the pre-trained weights and performing task-specifc fne-tuning.

Stage-1: Tracing & Feature Engineering. The goal of this stage is to prepare the data

for pre-training. The process begins with providing a source program and its executable inputs.

The frst step is to execute the program with each input to generate corresponding traces. The

traces record the runtime variable values, together with the execution coverage, logging the full

execution history of the program and revealing the changes to program states throughout

execution. To reduce the complexity and sparsity of the data, and make it easier for the model to

learn patterns and relationships between the variable values, we quantize the concrete runtime

https://doi.org/10.6084/m9.figshare.27367989

90

Figure 4.2: Overview of the workfow of TRACED.

values recorded in the traces into pre-defned value ranges. The quantization process maps

continuous values to a fxed set of discrete or bins. By quantizing the values, we create a fnite set

of possible outputs that can be used as ground-truth labels during training. After quantization,

we create program state labels and execution coverage labels that will help the model to capture

the program executions. The dataset fnally ends up with a set of samples and labels, where each

sample includes the source code with its program input and the labels represent the execution

trace of this sample.

Stage-2: Execution-aware Pre-training with Traces. We utilize the pre-processed

samples and labels obtained from Stage-1 to perform supervised pre-training. Specifcally, we use

a Transformer-encoder-based model [29] to learn the program traces and improve the model’s

understanding of program execution. The model could be either trained from scratch or loaded by

the pre-trained weights of existing code language models. To achieve the goal of producing

execution-aware code representation, we propose three pre-training objectives. The frst objective

is learning to generate the source code. We believe that understanding the naturalness of code

91

text [17, 42] is fundamental for the model to capture more sophisticated signals such as program

execution. This objective is implemented with masked language modeling (MLM), which masks a

certain percentage of tokens in the source code and trains the model to reconstruct the masked

tokens based on the surrounding context. The second objective is learning to predict the program

states. By predicting program state labels that were generated in Stage-1, the model learns to

capture the data fows and the side efects of code execution. The third objective is to predict the

execution coverage. By predicting the execution coverage labels generated by Stage-1, the model

learns to capture the dynamic control fow and helps the model understand how the program

state is reached and evolving.

Stage-3: Task-specifc Fine-tuning. Finally, we apply TRACED to several downstream

tasks. We load the pre-trained weights of TRACED, fne-tune the model for a specifc task, and

keep updating the model weights. Fine-tuning does not require the program to be executed;

rather, TRACED will reason about the execution statically with its learned execution signals

during the pre-training, and learn to accomplish the task accordingly. In many useful

applications, we would not have program traces available. We consider three downstream tasks for

TRACED: static execution estimation, which includes execution coverage and runtime variable

value predictions, clone retrieval, and vulnerability detection.

4.3 Tracing & Feature Engineering

In this section, we introduce how TRACED builds the learnable features from program

traces for models to learn the program executions.

4.3.1 Representing Program States

To imitate the way that human developers monitor variable values to understand program

behavior, we propose to train neural models with the log of runtime variable values to recognize

execution patterns and infer dynamic program behaviors in a way that is similar to human

92

1 // INPUT: 4
2 int factorial() {
3 int x, y; // {'x': 32767, 'y': 32767}
4 x = atoi(argv[1]); // {'x': 4, 'y': 32767}
5 if (x < 0) { // {'x': 4, 'y': 32767}
6 y = −1;
7 return y;
8 }
9 y = 1; // {'x': 4, 'y': 1}

10 for (int i = 1; i <= x; i++) // {'x': 4, 'y': 24, 'i': 5}
11 {
12 y ∗= i; // {'x': 4, 'y': 24, 'i': 5}
13 }
14 return y; // {'x': 4, 'y': 24, 'i': 5}
15 }

Figure 4.3: Program states with concrete runtime values.

intuition. By taking the log of variable values during the execution, we can represent the program

states in a more compact and interpretable form that is manageable for deep neural nets to

process.

We build the program state by taking snapshots of variable values at program points during

execution. When we take a snapshot at a specifc time step, similar to the moment that the

program is paused by a debugging breakpoint set right after line l, we maintain a value mapping,

M , to map the variable to its current value, similar to the value mapping table of the debugger.

To record the program state, we take the value snapshot after each line of execution and log the

variables’ current values.

Defnition: Program State. Formally, we defne the program state after the execution of a specifc

line, l, as s(l), represented as a set of variable values at this moment:

s(l) = {M(v, l) | v ∈ V, l ∈ L}

V represents the set of all traced variables, and L is the set of lines with source code.

Figure 4.3 shows an illustrative example of a simple factorial program and the comments after the

source code indicate the program state after the execution of that line. Also, we do not log the

program state for lines without executable code, such as line-8 of Figure 4.3.

93

Note that a source code line could be executed multiple times due to a loop or recursion.

While a more detailed representation of program execution might provide additional insights, it

also increases the complexity and computational requirements of the model. As a trade-of

between the complexity and performance, we use the last occurring execution of each line to

fnalize the program states, so that s(l) keeps getting updated until the execution terminates.

We apply such a trade-of based on the observations of real executions. Specifcally, the last

occurring values are typically sufcient to capture the results of loops and recursions. For

example, when calling a recursive function, only the last occurring value(s) of returned variable(s)

will be taken to fulfll the following execution of the caller. Similarly, the fnal values when loops

fnish will take part in the future execution. As shown in line-12 of Figure 4.3, variable y gets

multiplied inside a loop to calculate the factorial. Its value changes in each iteration, but it is less

informative to reason about the program’s overall behavior, as only the fnal value is used as the

return value (line-14). Thus, we would represent y using the value from the last occurring

execution of the loop.

4.3.2 Quantized Variable Values

As we introduced in Section 4.1, the distribution of concrete values is sparse and complex,

consequently difcult for a statistical model to ft. In addition, concrete values are not always

necessary. Some common program behaviors are accompanied by extremely large or small variable

values – for example, in C, uninitialized variables are often set to zero or uncommonly large

variables, but the concrete values are not meaningful because they depend only on the data

remaining on the stack, which could be randomly large or small. The model could represent such

behaviors by estimating the value ranges of variables without accurately predicting their concrete

values which are not informative or meaningful. Figure 4.3 displays some of these cases: after the

execution of line-3, x and y are uninitialized and randomly initiated as 32,767, which has no

concrete meaning but only makes the training data noisy and sparse.

94

Table 4.1: TRACED’s design of quantized variable values.

Data Type Value Types Concrete Value Quantized Value

Integer

0 < v ≤ 10, 000
10, 000 < v

0
−10, 000 ≤ v < 0

v < −10, 000

Positive Regular
Positive Large

Zero
Negative Regular
Negative Large

0.0 < v ≤ 1.0 Positive Small

Basic Float/Double

1.0 < v ≤ 10, 000.0
10, 000.0 < v

0.0
−1.0 < v < 0

−10, 000.0 ≤ v < −1.0
v < −10, 000.0

Positive Regular
Positive Large

Zero
Negative Small

Negative Regular
Negative Large

‘\0’ Null
Character

Boolean

v ∈ {a-zA-Z}
v ̸= ‘\0‘; v /∈ {a-zA-Z}

0
1

Alphabetic
Non-alphabetic

False
True

Void - Void

Integer [v1, v2, . . . , vn]; quantize(vi) ∈ Integer
Initialized

Not Initialized

Array Float/Double [v1, v2, . . . , vn]; quantize(vi) ∈ Float/Double
Initialized

Not Initialized

Character “⟨string⟩” Initialized
Not Initialized

Integer
0x0

Not 0x0
Null

Not Null

Pointer Float/Double
0x0

Not 0x0
Null

Not Null

Character
0x0

Not 0x0
Null

Not Null

95

To reduce the data complexity and increase the density, we defne 30 categories for quantized

values in Table 4.1. To comprehensively represent the variable values, the proposed quantized

categories consider both types, i.e., the data types and value types, that are statically defned,

and the dynamic runtime values. Our quantized categories cover the most common variable types

and value types, which we have found sufcient to capture important program execution

behaviors and relationships. By focusing on the most frequent value types, we can capture the

essential features of program execution. This makes our approach efective at capturing the

generalized program execution behaviors and patterns. We empirically illustrate our quantization

strategy’s efectiveness in Section 4.6.3.

4.3.3 Building Learnable Labels for Code Models

We used supervised pre-training with traces. We construct labels for code models to learn two

main perspectives of execution: program states and execution coverage.

Program State Labels. As we discussed in previous sections, we frst trace the program

variables during execution and log their runtime values. We then quantize these values into

pre-defned categories. This process results in a sequence of program states, each represented by a

set of quantized variable values (as shown in Figure 4.3), and we build the learnable features for

the code model on top of these program states. Specifcally, we build labels for variables that can

be quantized into Table 4.1’s categories and train the model to predict these labels given their

source code representations (Section 4.4.1.2). The label for each variable is represented as a tuple:

(data type, value type, quantized value). For example, in Figure 4.3, the label of variable X

occurring at line-3 is (Basic, Integer, Positive Large), as the current value of X is 32,767. We build

such labels for all occurrences of valid variables that can be quantized, and the set combining all

labels is considered as the program state labels of the code sample.

Execution Coverage Labels. To unify our design and reduce the complexity of the

model’s learning process, we also build execution coverage labels for each occurrence of variables,

96

aligning with the program state labels. Concretely, we specify whether a variable is covered or

not. The variables within the executed lines will be regarded as covered, and those within the

unexecuted lines will be labeled as not covered by execution. For example, in Figure 4.3, Line-6 is

not executed, so y at this line has the program state label of (Basic, Integer, Not Covered), while

y at line-9 is executed and has the program state label with concrete quantized value of (Basic,

Integer, Positive Regular).

4.4 Model

In this section, we explain the details of TRACED’s components and learning objectives

during pre-training and fne-tuning.

Model Architecture. Figure 4.4 shows the high-level architecture of TRACED’s

pre-training. The backbone of TRACED is a 12-layer Transformer encoder, similar to BERT [10]

and RoBERTa [29], which learns the generic code representations. On top of the backbone

Transformer layers, TRACED stacks multiple multi-layer-perceptron (MLP) layers as prediction

heads for diferent tasks. During the pre-training, as shown in Figure 4.4, TRACED applies a

language model prediction head, i.e., LM layer, to predict the masked token given its

contextualized representation, a program state prediction head to predict the program states

labels that we defned in Section 4.3.3, and an execution coverage head to prediction the

execution coverage labels. For the task-specifc fne-tuning, the backbone Transformer layers are

loaded with the pre-trained weights, while the prediction heads are replaced by a newly initialized

head customized for the specifc downstream task.

4.4.1 Execution-aware Pre-training

4.4.1.1 Model Input of Pre-training

Each pre-training sample includes the source code of an executable program and a valid

executable input. As shown in Figure 4.4, the executable input and the source code are fattened

97

Figure 4.4: High-level model architecture of TRACED. In the labels for program state layers,
NEG REG means “Negative Regular”, UNK means “Unknown”, and POS REG means “Positive
Regular”, which we have defned in Table 4.1.

and concatenated as one sequence. To distinguish the input from the source code, as they are

diferent modalities, TRACED uses special [SEP] tokens to separate them and indicate individual

positions. To alleviate the out-of-vocabulary concern of programming languages [22], TRACED

takes a pre-trained SentencePiece [25] subword tokenizer with vocabulary size of 50,000. It uses

this tokenizer to divide the concatenated sequence into a new sequence of sub-tokens.

Formally, we defne the executable inputs as E = {e1, ..., ei} and fattened source code as

C = {c1, ..., cj }, then the fnal model input will be

I ={[CLS], e1, ..., ei,[SEP],[SEP], c1, ..., cj ,[SEP]}. TRACED truncates the executable inputs

and the source code separately if they are too long. TRACED sets the maximum length of the

executable input sequence to 64 tokens, and the source code to 960 tokens. These numbers are

selected based on the statistics of executable inputs’ length of our pre-training dataset

(Section 4.5.2.1), and ft the rest of the model input with source code.

Note that the execution traces are not part of the model input, but are used as ground truth

labels for the model to predict during pre-training.

98

4.4.1.2 Learning Execution-aware Code Representations with Traces

TRACED is pre-trained with multiple objectives to jointly capture the static and dynamic

perspectives of the source code.

Learning Code Text. Learning code text is the essential frst step toward understanding

the execution of a program, as code text is the primary source of capturing the code

naturalness [17] and other static properties. We implement the code text learning objective by

adapting the masked language model objective [29, 10, 13]. Specifcally, given the model input

sequence, I, TRACED randomly chooses 15% of tokens [29, 10] only from the source code

sequence C part and replaces with the special [MASK] token (e.g., printf in Figure 4.4 is

masked). It leaves the executable input sequence E as is. The model is trained to encode the

context of [MASK] into its code representation, rmasked, and reconstruct the concrete masked

tokens conditioned on the representation. We represent the loss of learning code text as:

X
Lcode−text = −logP (cmasked | rmasked) (4.1)

masked

In Figure 4.4, the LM (Language Model) layer receives the masked token representation

generated by the last Transformer layer. The LM layer then predicts the concrete tokens by

mapping the token representation to the probability of each token in the vocabulary, using an

MLP (Multi-Layer Perceptron) layer. This process can be thought of as a classifcation task, where

the number of classes is equal to the size of the vocabulary. The goal is to learn a mapping from

the masked token representation to the most probable token in the vocabulary, given its context.

Learning Program States. The second pre-training objective, program state prediction

(PSP), is designed to enable the model to learn program execution behavior by predicting the

program state labels of the traced variables. These program state labels, as defned in

Section 4.3.3, contain information about the data types, value types, and quantized values of the

variables at the end of the program execution. Specifcally, TRACED frst identifes the variable

99

tokens in the source code sequence, denoted as {cvar | cvar ∈ V } ⊆ C, where V is the set of all

traced variables and C is the source code sequence. It then extracts the representation, rvar, of

each variable token and feeds it into the program state layer. The program state layer predicts the

variable’s joint likelihood of being the ground-truth data type, dvar, value type, tvar, and

quantized value, qvar. Note that if a variable is tokenized as multiple sub-tokens, all belonging

sub-tokens share the same program state label. Finally, TRACED computes the loss of PSP as

the sum of the losses of all variable tokens used for predicting their program states.

Mathematically, the loss is expressed as follows:

X
Lprogram−state = −logP (dvar, tvar, qvar | rvar) (4.2)

var

Learning Variable Coverage. The third pre-training objective, variable coverage

prediction (VCP), aims to learn the execution coverage, which is crucial for understanding the

control fow of the code given a specifc input. Similar to the PSP objective, VCP targets making

predictions for variable tokens. Also, sub-tokens belonging to the same variable will be assigned

the same coverage label. The loss of VCP is as follows:

X
Lvar−cov = −logP (covvar | rvar) (4.3)

var

For the efciency of joint optimization, we share the weights between the program state layers

and the execution coverage layers, as they are instinctively both classifers optimized by

cross-entropy loss. Concretely, the coverage label will be learned jointly with the quantized value:

if a variable is covered, it will be assigned a specifc quantized value label, and otherwise, it will

be assigned as “Not Covered”.

Finally, TRACED combines the losses of all three objectives and computes their sum as the

fnal loss of a pre-training sample. It back-propagates the gradients through both the prediction

layers and the backbone Transformer layers to update their weights. We denote the full set of

TRACED’s learnable parameters as θ and represent the loss as follows:

100

L(θ) = Lcode−text(θ) + Lprogram−state(θ) + Lvar−cov(θ) (4.4)

4.4.2 Task-specifc Fine-tuning

TRACED loads the model weights of Transformers layers, which are pre-trained to produce

execution-aware code representations, and further fne-tunes the model for downstream tasks. We

consider three downstream tasks as the main applications for TRACED: (1) Static estimation of

program execution which includes both execution coverage prediction and runtime variable value

prediction; (2) Semantic Clone Retrieval; (3) Vulnerability Detection.

Static Execution Estimation. Our goal of pre-training is to encode the execution

patterns into the code representation, so the model could estimate the program execution

statically. As a direct application, TRACED fne-tunes the model to predict (1) the execution

coverage and (2) runtime variable values using source code and program input. TRACED

evaluates the fne-tuned model to estimate the execution of unseen programs in the same way.

Specifcally, for execution coverage prediction, TRACED identifes all the branching

statements to locate the branches, B = {b1, b2, ..., bm}, within the source code. It trains the model

to predict a binary label, 0 means the branch is not covered by the current execution and 1 means

covered, for each bi ∈ B. For the model’s convenience to make predictions, the special token

[MASK] is inserted at the beginning of each branch. For example, the following if-else has two

branches that are pre-processed for branch prediction: if (condition) {[MASK] ...} else

{[MASK] ... }. During the fne-tuning, the Transformer layers learn to encode the branch

information into the corresponding [MASK] token representation with the built-in bi-directional

attention and positional encoding. Then the classifcation head takes [MASK] representations to

predict whether a branch is covered by the current execution. For variable value prediction,

TRACED identifes variables, V = {v1, v2, ..., vn} and trains the model to predict their quantized

values (Section 4.3.2) during the execution.

101

Semantic Clone Retrieval. Detecting semantic clones is signifcant for software

maintenance [23, 28], yet very challenging in practice since the token and syntactic structures

overlap among semantic clones may be quite limited. This task requires the model to estimate the

program behaviors without executing the programs and capture the similarity among them. It

evaluates the model’s semantic reasoning capacity to identify the code similarity and retrieve

clones: given a program as a query, and an arbitrary collection of programs as candidates, the

model needs to identify the query’s semantic clones from possibly thousands of candidates.

Vulnerability Detection. Vulnerability detection is a crucial task in software security,

aiming to identify potential security vulnerabilities in software code that could be exploited by

attackers. The vulnerabilities may exist due to various reasons, including programming errors,

design faws, or confguration issues. Detecting these vulnerabilities early in the software

development lifecycle can prevent potential attacks, mitigate risks, and save resources. We

fne-tune TRACED’s pre-trained model on datasets consisting of vulnerable and non-vulnerable

code samples, so the model learns to classify code functions as vulnerable or non-vulnerable by

estimating their execution behavior.

4.5 Experimental Setup

4.5.1 Trace Collection

In this section, we explain how we traced the dynamic information in programs to produce

concrete traces, given the source code and program input.

First, we compile the program using gcc with the options -g -O0. Option -g preserves debug

information, which is necessary in order to read variables and source code locations using the

debugger, and option -O0 disables compiler optimizations, which could optimize out some

variables thus preventing them from being read at runtime. We use this option because we seek to

model the semantics of the source code in terms of variable values rather than the optimized

machine code.

102

Second, we load the program with the given standard input redirected to stdin and attach

the gdb2 debugger, using the Python API to implement the tracing command. Starting from the

entry point (main), we execute the program one line at a time using the step command. At each

line, we print out the concrete values of all variables in scope. We also set breakpoints at the

entry of each user-defned function, where we log the values of each parameter. For numeric types,

we simply log their string representation. For char and char * (string) types, we log the

human-readable values of the chars/strings. We use gdb’s pretty-printer to print struct types

and statically allocated array types, such as int[<size>]. For pointer types, we print the

memory address of the pointer as a hex code. We only traced the functions that were defned in

the source code and skipped over all standard library functions.

4.5.2 Dataset

4.5.2.1 Pre-training Dataset

IBM’s CodeNet Dataset [40] includes 4,053 programming challenges for several programming

languages from the AIZU Online Judge and AtCoder platforms, and each problem has up to

thousands of implementations submitted by distinct programmers. In this work, we focus on the

C language as the main resource for the pre-training and downstream tasks, so we build our

pre-training dataset with programming challenges that have C solutions. Besides the large

number of samples and the complexity of programming challenges, we choose CodeNet to build

our datasets as it maintains at least one and at most twenty executable inputs for each challenge,

so we could execute and trace the implementations of the challenge, and consequently build our

execution labels for the model to learn.

Out of 1,900 programming challenges with C solutions, we select 1,805 of them to build the

pre-training dataset and leave the other 95 problems as held-out problems for evaluating the

model’s capacity for the downstream static execution estimation task. Splitting samples strictly

by challenge efectively avoids the issue of data leakage from the training set to the held-out set.

2https://www.sourceware.org/gdb

https://www.sourceware.org/gdb

103

Table 4.2: Details of downstream task datasets.

Task Dataset Train Valid Test

Execution Estimation CodeNet 121,319 13,116 13,116

Clone Detection CXG-POJ104 32,000 8,000 12,000

Vulnerability Detection
REVEAL

D2A

15,867

4,644

2,268

597

4,535

619

CXG-Devign 21,854 2,732 2,732

We randomly sample up to 200 execution traces for each challenge, and this ends up with 121,319

training traces.

4.5.2.2 Downstream tasks

In this section, we introduce the datasets we use for each downstream task and explain the

corresponding evaluation metrics. The statistics of these datasets are in Table 4.2.

Static Execution Estimation. We build the dataset for this task using CodeNet. We

build the training samples from the 1,805 challenges that have been selected by the pre-training,

and build evaluation samples from the held-out 95 challenges to avoid model memorization and

data leakage.

Metrics. For the execution coverage prediction, we consider evaluation metrics in two

granularities: full execution path and branch coverage. Concretely, for a sample with m branches,

we denote the full set of their labels as LB = {lb1, lb2, ..., lbm}, and the model prediction set as

ˆ ˆ ˆLB = {lb̂1, lb2, ..., lb̂
m}. If LB == LB, we regard the prediction as matching the full execution

ˆpath. For the branch coverage, we compute the occurrence of lbi == lbi, where 1 ≤ i ≤ m, and

report the accuracy, precision, recall, and F1. Similarly, for the n quantized variable values within

ˆthe program, QV = {qv1, qv2, ..., qvm}, our model makes predictions as QV = {qv̂1, qv̂2, ..., qv̂m}.

ˆIf QV == QV , we say the model accurately predicts the full execution. For the individual value

match, we compute the occurrence of qvi == qv̂i and report the accuracy.

104

Semantic Clone Retrieval. We use CodeXGLUE-POJ104 [31, 30] as the dataset for this

task. CodeXGLUE-POJ104 contains 104 programming challenges, and each has 500 C/C++

solutions submitted by diferent programmers. CodeXGLUE [30] reconstructs it as a public

benchmark by splitting the dataset into Train (64 challenges), Dev (16 challenges), and Test (24

challenges) sets, with no overlapped challenge between any two sets.

Metrics. MAP@R (Mean Average Precision @ R)3 is the main metric of this task, where we

follow the design of the CodeXGLUE benchmark. Average precision at R is a common metric to

evaluate the quality of information retrieval; it measures the average precision scores of a set of

the top-R clone candidates presented in response to a query program. The “R” for CodeXGLUE

is 499 as it has 500 solutions for each challenge.

Vulnerability Detection. We utilized three publicly available datasets: REVEAL (RV) [8],

D2A [55], and CodeXGLUE-Devign (CXG) [30, 56]. The REVEAL dataset was curated by

Chakraborty et al. [8] to simulate a real-world scenario where bugs are relatively rare, resulting in

a ratio of approximately 1:10 between buggy and benign samples. The D2A dataset is a balanced

dataset focusing on bug-fxing commits. It labels the previous version of modifed functions as

buggy and the fxed version as benign. Finally, the CodeXGLUE-Devign dataset, introduced by

Zhou et al. [56], is also a balanced dataset that has been reconstructed as a public benchmark by

CodeXGLUE, ensuring that all models can be evaluated using the same train/valid/test splits.

Metrics. REVEAL is an imbalanced dataset, so we use F1 as the evaluation metric. D2A and

Devign are balanced datasets, so we follow the original benchmark to report the classifcation

accuracy.

4.5.3 Model Confguration

TRACED’s backbone is a standard RoBERTaBASE architecture [29] with 12 layers of

Transformer-encoder, and each layer has 12 attention heads and the hidden dimension is 768.

3https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_
precision

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision

105

TRACED is initialized with the pre-trained weights from UnixCoder [14]4 , and we use its BPE

tokenizer to split the rare tokens into BPE sub-tokens. The maximum sequence length is 1024

BPE tokens, and the longer sequence will be truncated. When the code sample is paired with

executable inputs, the maximum length for the executable input is 64, and the source code is 960.

Our experiments are conducted on 2 × 24GB NVIDIA GeForce RTX-3090 GPUs. We further

pre-train the model for 10 epochs to learn the program execution with two learning rates, 5e-5 and

2e-5, and report the best-performing models for downstream tasks. For all the fne-tuning tasks,

we use the learning rate of 8e-6. Learning rates typically decrease for later phases [13, 15, 11], so

TRACED follows the same design. We use Adam optimizer [24] with the linear learning rate

decay. Our model is implemented mainly with Pytorch [35] and Huggingface [49].

4.6 Evaluation

In this section, we ask the following four RQs:

• RQ1: How efective is TRACED in statically estimating the program execution?

• RQ2: How does our proposed training strategy contribute to learning the program execution?

• RQ3: Is our proposed quantized values for programs efective in guiding the model to learn

program executions?

• RQ4: How does TRACED perform w.r.t. statically pre-trained baselines for code

understanding tasks?

4.6.1 RQ1. Efectiveness of TRACED in Static Estimation of Execution

In this section, we demonstrate the efectiveness of TRACED in statically estimating

program execution. The evaluation is more challenging and realistic than TRACED’s

4Specifcally, we load unixcoder-base-nine, as its pre-training considers C language code samples: https://
huggingface.co/microsoft/unixcoder-base-nine. Note that this checkpoint is pre-trained only with the MLM
objective, while the original paper [14] reports other better-performing variants that are not released publicly.

https://huggingface.co/microsoft/unixcoder-base-nine
https://huggingface.co/microsoft/unixcoder-base-nine

106

pre-training as it requires the model to predict not only for individual variables but also branches

and the full execution path.

Baseline. In this RQ, we mainly compare the execution-aware TRACED with UnixCoder [14].

Now we explain the reasons for this choice. First, TRACED is initialized with the pre-trained

UnixCoder weights, so comparing TRACED with the UnixCoder performance is a direct

assessment of the impact of our proposed pre-training. Second, UnixCoder reports the

state-of-the-art performance in many tasks, including clone detection, code search and

summarization, and code generation and completion, signifcantly outperforming other

pre-trained code models, such as CodeBERT [13] and GraphCodeBERT [15]. Third, it consumes

up to 1,024 tokens, while most pre-trained code models [13, 6, 15, 1, 48] take at maximum 512

tokens. By consuming longer sequences, UnixCoder is able to handle longer programs and make

complete predictions without truncating code in many cases. As TRACED is also designed to

consume 1,024 tokens, it is not fair to compare it in this task with baselines with a maximum

length of 512, as the baselines will necessarily consider fewer branches for prediction.

Result. The comparison is shown in Table 4.3, Row-1 vs. Row-2. TRACED signifcantly

outperforms UnixCoder in the static estimation of execution coverage and dynamic values of

variables, especially when the evaluation granularity is coarse, i.e., full execution path (Full Path

column in Table 4.3) and the runtime values of the full execution (Full Exec column in Table 4.3).

TRACED correctly predicts the complete execution paths for 71.6% held-out samples and

Table 4.3: Performance on static execution estimation.

Task
Full Path

Coverage

Branch

Runtime Value

Full Exec Var

Metric Acc Acc Prec Rec F1 Acc Acc
UnixCoder 63.7 79.7 81.7 85.4 83.5 39.3 87.8

TRACED
-w/o MLM
-w/o PSP
-w/o VCP

71.6
70.4
69.0
66.1

83.1
82.6
81.4
80.3

84.6
85.3
83.0
82.4

88.1
86.0
86.9
85.6

86.3
85.6
84.9
84.0

49.2
49.0
44.0
46.7

89.2
89.2
87.4
89.0

-MLM-only 65.6 81.0 83.1 86.0 84.6 43.0 87.5

107

//Input: 19 100
#include <stdio.h>
int main(){

int A, N, T, B;
scanf("%d %d", &N, &A);
T = N * N;
B = T - A;
if (A > 0) {printf("%d", B);} // Branch-1
else {printf("%d", T);} // Branch-2
return 0;

}

UnixCoder Predictions (Wrong)

Branch-1: Not executed

Branch-2: Not executed

TRACED Predictions (Correct)

Branch-1: Executed

Branch-2: Not Executed

Figure 4.5: A qualitative example of execution coverage prediction. The source code is the same as
Figure 4.1, but the input triggers a diferent execution path. TRACED correctly fips the prediction
while UnixCoder remains the same prediction.

accurately predicts all variable values for 49.2% executions, revealing the execution-aware

pre-training improves over UnixCoder’s performance by 12.4% and 25.2%, respectively.

Case Study with Qualitative Examples. We present two qualitative examples in Figures 4.5

and 4.6 to concretely compare TRACED with UnixCoder in execution coverage and runtime

value predictions, respectively. Both samples have simple execution logic from the human

perspective, but the statically pre-trained UnixCoder still fails to correctly estimate them.

Figure 4.5 illustrates that UnixCoder is not sensitive to distinct inputs that trigger diferent

execution coverage, while TRACED is able to determine the numerical relations among varied

values. Figure 4.6 illustrates TRACED’s capacity in exposing abnormal program behaviors.

Result-1: With a similar number of learnable parameters, TRACED outperforms the state-of-

the-art pre-trained code model in the static estimation of program execution task. Our proposed

pre-training successfully encodes the execution awareness into TRACED’s code representations.

108

//Input: 4 4320 4320 4320
#include <stdio.h>
int main (void) {

int n, a, max = 0, sum = 0, i;
for (i = 0; i < n; i++){ // Quantized value of n?

scanf("\%d", &a);
if (a > max) max = a;
sum += a;

}
printf("\%d\\n" , sum - max / 2);
return 0;

}

UnixCoder Prediction (Wrong)

n: Zero

TRACED Prediction (Correct)

n: Negative Large

Figure 4.6: A qualitative example of runtime value prediction. The sample contains a vulnerability
of type CWE-457 “Use of Uninitialized Variable”. The uninitialized n, which is randomly assigned
as -32767, is used in the for-loop. TRACED successfully exposes this abnormal behavior statically
by identifying n as a “Negative Large” value while UnixCoder fails. Predictions of other variables
are hidden for better illustration.

4.6.2 RQ2. Efectiveness of TRACED’s Pre-training Objectives

One of the main contributions of this chapter is proposing multi-task pre-training to

efectively learn the execution-aware code representations. In this RQ, we study the efectiveness

and contribution of each of TRACED’s objectives, and consequently illustrate the importance of

the multiple tasks.

To conduct these experiments, we remove one pre-training objective at a time and pre-train

the variant with exactly the same setup as the main model. Then we fne-tune the variant on the

static execution estimation task and compare the performance with the main model. We also

consider a variant that is pre-trained on our dataset but only with MLM objectives. The results

are shown in Row 3-6 of Table 4.3. Removing any objective hurts TRACED’s performance,

suggesting that comprehensively learning both static and dynamic code properties is more

efective than learning one perspective alone.

109

Result-2: TRACED’s multi-task pre-training helps the model comprehensively learn both

static and dynamic aspects of source code. Removing any one of TRACED’s three pre-training

objectives noticeably hurts the model’s performance in statically estimating program executions.

4.6.3 RQ3. Efectiveness of TRACED’s Quantized Variable Values

Another contribution of this chapter is that the simplifed and compact representation of

program executions helps code models to capture dynamic code properties. In this RQ, we

empirically reveal that the design of quantized variable values especially contributes to the

efective learning of the code models, as it reduces the data sparsity of variable values but still

defnes sufciently detailed value categories to distinguish dissimilar values.

To isolate the evaluation of TRACED’s quantized values, we pre-train several variants by

only recreating quantized value labels, i.e., qvar in Equation (4.2), using diferent value

abstraction strategies. For example, when we pre-train a variant studying the impact of concrete

values, we replace TRACED’s defned qvar with the concrete traced values. As diferent strategies

abstract values at diferent granularities, it is not feasible to compare them for the value

prediction task, since the coarse-grained strategy will beneft. Therefore, we only fne-tune the

studied variants for the execution coverage prediction.

Baseline. First, we consider comparing with concrete values, as it is the most intuitive strategy

to represent variable values. Then, we consider two data abstractions from LExecutor [44]: coarse

and fne-grained. They share similar high-level intuition with us, mapping concrete values to

pre-defned bins to reduce data complexity and consequently help the model’s learning. Note that

LExecutor’s data abstraction serves a diferent goal than TRACED, and focuses on Python while

TRACED focuses on C, so we could not directly reuse their pre-defned bins. As their defnition

of data abstraction is clear and straightforward, we re-implement their data abstraction for the C

language and integrate it into our framework for comparison. We discuss and compare LExecutor

with TRACED in more detail in the Related Work section (Section 4.7).

110

Figure 4.7: Comparing TRACED’s design of quantized variable values with other value abstraction
strategies.

Results. The comparison of value abstractions are shown in Figure 4.7. Unsurprisingly, concrete

values report poor performance compared to other data abstractions, empirically revealing the

difculties for code models to ft sparse and complex data distributions. Interestingly, we notice

both of LExecutor’s abstractions perform slightly worse than TRACED. We speculate that

LExecutor is not as sensitive as TRACED to numeric relations in the conditional statements, as

they do not distinguish among small, regular, and large values. Note that execution coverage is

not the main focus of LExecutor, so more fne-grained categories are not required to serve its

goal, while they are empirically proven to be necessary for TRACED’s scope.

Result-3: TRACED’s quantized variable values directly contribute to the efectiveness of its

execution-aware pre-training. It reduces the data sparsity of concrete values but defnes suf-

ciently detailed value categories to distinguish dissimilar values for reasoning about execution

paths.

111

Table 4.4: Comparison of Clone Retrieval and bug detection.

Task Clone Retrieval Vulnerability Detection

Metric MAP@R F1 Accuracy

Dataset POJ-104 RV D2A CXG

CodeBERT
GraphCodeBERT
PLBART-base
CodeT5-base*
UnixCoder

85.2
86.7
75.9
65.9
89.5

45.5
46.6
46.9
46.5
47.4

61.0
58.3
61.7
62.1
61.2

63.2
62.9
63.3
64.4
65.3

TRACED 91.2 50.4 62.1 65.9

*CodeT5-base has 223M parameters, roughly twice as large as other baselines and TRACED. We report
its performance as CodeT5-small has only 60M parameters and performs poorly, and CodeT5 does not
provide a ∼110M model.

4.6.4 RQ4. TRACED’s Performance in Code Understanding Tasks

In this RQ, we study TRACED’s performance on two code understanding tasks: semantic

clone retrieval and function-level vulnerability detection. Note that samples for these tasks are

not paired with executable inputs, so the model needs to reason about the general code semantics

to make predictions.

Baselines. We consider fve pre-trained code models with similar parameter sizes to TRACED.

CodeBERT [13] pre-trains a RoBERTa model with MLM and replaced token detection (RTD)

tasks. GraphCodeBERT [15] is initialized with CodeBERT and continues pre-training with

augmented data fow graphs to learn the static data dependencies. PLBART [1] and CodeT5 [48]

both apply the sequence-to-sequence neural architecture, where PLBART adapts the BART [26]

model to learn code translation and summarization, and CodeT5 adapts [41] to predict the

missing code tokens and locate the identifers. We also, again, consider UnixCoder as a baseline.

Results. We show the results in Table 4.4. Even though the samples in these benchmarks do not

have executable inputs, TRACED still outperforms the statically pre-trained models by a clear

margin. We speculate the reason is that TRACED could estimate the general execution

behaviors without specifc inputs, and the program semantics regarding these two code

112

understanding tasks could be better captured with such a general sense. Specifcally, clone

retrieval requires the model to identify the behavioral similarities of code as semantic clones

mostly difer in code text and syntax. Also, vulnerable code with potential anomalies could be

directly identifed by TRACED in some cases like Figure 4.6.

Result-4: TRACED outperforms statically pre-trained models in clone retrieval and vulner-

ability detection tasks, suggesting TRACED’s general estimation of execution helps it capture

the code semantics more efectively.

4.7 Related Work

Pre-trained Models for Source Code The research community has shown a growing

interest in developing pre-trained Transformer models for source code. These models can be

broadly categorized into three primary architectures: Encoder-only [13, 15, 47, 5, 21, 6, 11],

Decoder-only [9, 50, 2], and Encoder-decoder [33, 1, 14, 27, 7]. Encoder-only models

predominantly employ MLM objective and sequence understanding tasks (e.g., predicting next

statement [21] and contrasting semantics [11]). This architecture excels at understanding the

static code features. Decoder-only models, on the other hand, are typically trained by predicting

code tokens in a left-to-right manner. This architecture focuses on generating code text based on

learned patterns. The Encoder-decoder models combine the strengths of both Encoder-only and

Decoder-only models and are pre-trained using various tasks, including denoising autoencoding

for reconstructing wrongly permuted tokens [1], predicting missing identifers in the code [48], and

recovering method names from the source code [33].

These models primarily focus on learning the static aspects of source code but often miss out

on capturing the dynamic properties of code execution. This limitation restricts these models

from accurately inferring runtime behaviors, debugging issues, and understanding complex

program states.

113

Modeling Program Execution Pei et al. [39, 37, 38] proposed a series of pioneering

works to learn the executions of binary programs with Transformer-based models. They used

concrete values from registers, which are feasible in their scope because binary programs have a

smaller space of possible values and efects compared to source code. On the other hand, our work

focuses on encoding execution at the source code level by imitating the developers’ code practice.

Variables in source code have more complicated data and value types than machine registers. We

introduce quantized values in order to decrease the data complexity and sparsity.

Several works [53, 43, 4, 34, 3, 51] have attempted learning to execute programs as a direct

goal. Souza and Pradel [44] also proposed LExecutor to predict missing values during execution.

While it shares similar intuition of mapping concrete values to discrete categories, LExecutor is

distinct from TRACED in several perspectives. First, LExecutor focuses only on predicting the

values, while TRACED proposes a general pre-training strategy to encode the comprehensive

execution awareness, not only values but also execution coverage, into the code representation.

Besides, to yield code representations at a better quality, TRACED jointly learns both code text

and dynamic executions rather than sticking to a single perspective. Due to the distinct aims and

designs, we empirically illustrate in RQ3 (Section 4.6.3) that LExecutor’s value abstractions are

not perfectly aligned with our scope.

Nie et al. [32] annotated programs with information about the program’s possible executions

without executing the code but provided only statically available information. Conversely, several

works [16, 45, 46, 36] require dynamic traces as input. We show that TRACED’s pre-training is

able to encode the execution awareness into code representation and estimate the dynamic

semantics with static information alone. We expect such an implicit execution encoding could also

help with broader software engineering tasks, such as bug localization and program repair [51, 52].

4.8 Threats to Validity

Internal Validity First, the current design of quantized value is not covering all variables

within the program due to the complexity of their data structures, value ranges, and/or memory

114

allocations. Second, currently, we only trace the program by feeding it valid and executable inputs

which will not terminate the program or throw errors. This might make the model less capable of

capturing program termination and error-throwing behaviors.

External Validity At present, TRACED supports only the C programming language. This

limitation is due to the reliance on the capabilities of the tracer used to log the execution history,

which may not be readily available or equally efective for other programming languages. In order

to extend TRACED’s applicability, it is necessary to ensure that the tracer employed can

accurately and consistently capture the required information across diferent languages. Adapting

TRACED to multiple languages would require the development or adaptation of tracers that can

efectively handle the intricacies of each language and produce comparable results, enabling a

consistent analysis of code behavior across a broader range of programming languages.

4.9 Conclusion

We propose TRACED, an execution-aware pre-trained model that jointly learns the static

and dynamic code properties, to address the limitation of existing, statically pre-trained code

models. The evaluation empirically reveals that TRACED is more efective in estimating code

execution statically than statically pre-trained models. TRACED also successfully transfers

execution awareness to code understanding tasks.

4.10 Acknowledgments

We appreciate all the anonymous reviewers for their thoughtful feedback and suggestions to

improve this work.

This work was supported in part by NSF grants CCF-2313054, CCF-2313055, CCF-1815494,

CCF-210740, CCF-1845893, IIS-2221943, and DARPA/NIWC Pacifc N66001-21-C-4018. Any

opinions, fndings, conclusions or recommendations expressed herein are those of the authors and

do not necessarily refect those of the US Government, NSF, or DARPA.

115

4.11 Bibliography

[1] Ahmad, W., Chakraborty, S., Ray, B., and Chang, K.-W. Unifed pre-training for

program understanding and generation. In Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Language

Technologies (Online, June 2021), K. Toutanova, A. Rumshisky, L. Zettlemoyer,

D. Hakkani-Tur, I. Beltagy, S. Bethard, R. Cotterell, T. Chakraborty, and Y. Zhou, Eds.,

Association for Computational Linguistics, pp. 2655–2668.

[2] Austin, J., Odena, A., Nye, M., Bosma, M., Michalewski, H., Dohan, D., Jiang,

E., Cai, C. J., Terry, M., Le, Q. V., and Sutton, C. Program synthesis with large

language models. CoRR abs/2108.07732 (2021).

[3] Bieber, D., Goel, R., Zheng, D., Larochelle, H., and Tarlow, D. Static prediction

of runtime errors by learning to execute programs with external resource descriptions. In The

Eleventh International Conference on Learning Representations (2023).

[4] Bieber, D., Sutton, C., Larochelle, H., and Tarlow, D. Learning to Execute

Programs with Instruction Pointer Attention Graph Neural Networks. In Advances in Neural

Information Processing Systems (2020), vol. 33, Curran Associates, Inc., pp. 8626–8637.

[5] Bui, N. D. Q., Yu, Y., and Jiang, L. Self-Supervised Contrastive Learning for Code

Retrieval and Summarization via Semantic-Preserving Transformations. In SIGIR ’21 (Jul

2021), pp. 511–521. arXiv: 2009.02731.

[6] Buratti, L., Pujar, S., Bornea, M., McCarley, S., Zheng, Y., Rossiello, G.,

Morari, A., Laredo, J., Thost, V., Zhuang, Y., and Domeniconi, G. Exploring

software naturalness through neural language models, 2020.

116

[7] Chakraborty, S., Ahmed, T., Ding, Y., Devanbu, P. T., and Ray, B. Natgen:

generative pre-training by “naturalizing” source code. In Proceedings of the 30th ACM Joint

European Software Engineering Conference and Symposium on the Foundations of Software

Engineering (New York, NY, USA, 2022), ESEC/FSE 2022, Association for Computing

Machinery, p. 18–30.

[8] Chakraborty, S., Krishna, R., Ding, Y., and Ray, B. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering 48,

09 (Sept. 2022), 3280–3296.

[9] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J.,

Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,

G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,

N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P.,

Such, F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E.,

Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J.,

Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike,

J., Achiam, J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M.,

Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,

Sutskever, I., and Zaremba, W. Evaluating large language models trained on code,

2021. arXiv: 2107.03374.

[10] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. BERT: Pre-training of deep

bidirectional transformers for language understanding. In Proceedings of the 2019 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Minneapolis, Minnesota, Jun 2019), Association for

Computational Linguistics, pp. 4171–4186.

117

[11] Ding, Y., Buratti, L., Pujar, S., Morari, A., Ray, B., and Chakraborty, S.

Towards learning (dis)-similarity of source code from program contrasts. In Proceedings of

the 60th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long

Papers) (Dublin, Ireland, May 2022), S. Muresan, P. Nakov, and A. Villavicencio, Eds.,

Association for Computational Linguistics, pp. 6300–6312.

[12] Ding, Y., Ray, B., Premkumar, D., and Hellendoorn, V. J. Patching as translation:

the data and the metaphor. In 35th IEEE/ACM International Conference on Automated

Software Engineering (2020), ASE ’20.

[13] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,

Liu, T., Jiang, D., and Zhou, M. CodeBERT: A pre-trained model for programming and

natural languages. In Findings of the Association for Computational Linguistics: EMNLP

2020 (Online, Nov 2020), Association for Computational Linguistics, pp. 1536–1547.

[14] Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., and Yin, J. UniXcoder: Unifed

cross-modal pre-training for code representation. In Proceedings of the 60th Annual Meeting

of the Association for Computational Linguistics (Volume 1: Long Papers) (Dublin, Ireland,

May 2022), S. Muresan, P. Nakov, and A. Villavicencio, Eds., Association for Computational

Linguistics, pp. 7212–7225.

[15] Guo, D., Ren, S., Lu, S., Feng, Z., Tang, D., LIU, S., Zhou, L., Duan, N.,

Svyatkovskiy, A., Fu, S., Tufano, M., Deng, S. K., Clement, C., Drain, D.,

Sundaresan, N., Yin, J., Jiang, D., and Zhou, M. GraphCodeBERT: Pre-training code

representations with data fow. In International Conference on Learning Representations

(2021).

118

[16] Henkel, J., Lahiri, S. K., Liblit, B., and Reps, T. Code vectors: understanding

programs through embedded abstracted symbolic traces. In Proceedings of the 2018 26th

ACM Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (New York, NY, USA, Oct 2018), ESEC/FSE 2018,

Association for Computing Machinery, pp. 163–174.

[17] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. On the naturalness of

software. In Proceedings of the 34th International Conference on Software Engineering

(2012), ICSE ’12, IEEE Press, p. 837–847.

[18] Jiang, N., Liu, K., Lutellier, T., and Tan, L. Impact of code language models on

automated program repair. In Proceedings of the 45th International Conference on Software

Engineering (2023), ICSE ’23, IEEE Press, p. 1430–1442.

[19] Jiang, N., Lutellier, T., Lou, Y., Tan, L., Goldwasser, D., and Zhang, X. Knod:

Domain knowledge distilled tree decoder for automated program repair. In Proceedings of the

45th International Conference on Software Engineering (2023), ICSE ’23, IEEE Press,

p. 1251–1263.

[20] Jiang, N., Lutellier, T., and Tan, L. Cure: Code-aware neural machine translation for

automatic program repair. In 2021 IEEE/ACM 43rd International Conference on Software

Engineering (2021), ICSE ’21, pp. 1161–1173.

[21] Kanade, A., Maniatis, P., Balakrishnan, G., and Shi, K. Learning and evaluating

contextual embedding of source code. In Proceedings of the 37th International Conference on

Machine Learning (2020), ICML’20, JMLR.org.

[22] Karampatsis, R.-M., Babii, H., Robbes, R., Sutton, C., and Janes, A. Big code !=

big vocabulary: Open-vocabulary models for source code. In 2020 IEEE/ACM 42nd

International Conference on Software Engineering (2020), ICSE ’20, pp. 1073–1085.

https://JMLR.org

119

[23] Kim, S., Woo, S., Lee, H., and Oh, H. VUDDY: A Scalable Approach for Vulnerable

Code Clone Discovery. In 2017 IEEE Symposium on Security and Privacy (SP) (2017),

pp. 595–614. Publisher: IEEE.

[24] Kingma, D. P., and Ba, J. Adam: A method for stochastic optimization. CoRR

abs/1412.6980 (2015).

[25] Kudo, T., and Richardson, J. SentencePiece: A simple and language independent

subword tokenizer and detokenizer for neural text processing. In Proceedings of the 2018

Conference on Empirical Methods in Natural Language Processing: System Demonstrations

(Brussels, Belgium, Nov 2018), EMNLP ’18, Association for Computational Linguistics,

pp. 66–71.

[26] Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O.,

Stoyanov, V., and Zettlemoyer, L. BART: Denoising sequence-to-sequence

pre-training for natural language generation, translation, and comprehension. In Proceedings

of the 58th Annual Meeting of the Association for Computational Linguistics (Online, Jul

2020), Association for Computational Linguistics, pp. 7871–7880.

[27] Li, Y., Choi, D., Chung, J., Kushman, N., Schrittwieser, J., Leblond, R., Eccles,

T., Keeling, J., Gimeno, F., Dal Lago, A., Hubert, T., Choy, P.,

de Masson d’Autume, C., Babuschkin, I., Chen, X., Huang, P.-S., Welbl, J.,

Gowal, S., Cherepanov, A., Molloy, J., Mankowitz, D. J., Sutherland Robson,

E., Kohli, P., de Freitas, N., Kavukcuoglu, K., and Vinyals, O. Competition-level

code generation with alphacode. Science 378, 6624 (Dec. 2022), 1092–1097.

[28] Li, Z., Zou, D., Xu, S., Jin, H., Qi, H., and Hu, J. VulPecker: an automated

vulnerability detection system based on code similarity analysis. In Proceedings of the 32nd

Annual Conference on Computer Security Applications (New York, NY, USA, Dec 2016),

ACSAC ’16, Association for Computing Machinery, pp. 201–213.

120

[29] Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M.,

Zettlemoyer, L., and Stoyanov, V. RoBERTa: A robustly optimized BERT pretraining

approach. CoRR abs/1907.11692 (2019).

[30] Lu, S., Guo, D., Ren, S., Huang, J., Svyatkovskiy, A., Blanco, A., Clement,

C. B., Drain, D., Jiang, D., Tang, D., Li, G., Zhou, L., Shou, L., Zhou, L.,

Tufano, M., Gong, M., Zhou, M., Duan, N., Sundaresan, N., Deng, S. K., Fu, S.,

and Liu, S. CodeXGLUE: A machine learning benchmark dataset for code understanding

and generation. CoRR abs/2102.04664 (2021).

[31] Mou, L., Li, G., Zhang, L., Wang, T., and Jin, Z. Convolutional neural networks over

tree structures for programming language processing. In Proceedings of the Thirtieth AAAI

Conference on Artifcial Intelligence (2016), pp. 1287–1293.

[32] Nie, P., Banerjee, R., Li, J. J., Mooney, R. J., and Gligoric, M. Learning Deep

Semantics for Test Completion. arXiv. arXiv:2302.10166.

[33] Niu, C., Li, C., Ng, V., Ge, J., Huang, L., and Luo, B. SPT-Code:

Sequence-to-sequence pre-training for learning source code representations. CoRR

abs/2201.01549 (2022).

[34] Nye, M., Andreassen, A. J., Gur-Ari, G., Michalewski, H., Austin, J., Bieber,

D., Dohan, D., Lewkowycz, A., Bosma, M., Luan, D., Sutton, C., and Odena, A.

Show Your Work: Scratchpads for Intermediate Computation with Language Models, Nov

2021. arXiv:2112.00114.

[35] Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,

T., Lin, Z., Gimelshein, N., Antiga, L., Desmaison, A., Köpf, A., Yang, E.,

DeVito, Z., Raison, M., Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai,

J., and Chintala, S. PyTorch: an imperative style, high-performance deep learning library.

Curran Associates Inc., Red Hook, NY, USA, 2019.

121

[36] Patra, J., and Pradel, M. Nalin: learning from runtime behavior to fnd name-value

inconsistencies in jupyter notebooks. In Proceedings of the 44th International Conference on

Software Engineering (Pittsburgh Pennsylvania, May 2022), ACM, pp. 1469–1481.

[37] Pei, K., Guan, J., Broughton, M., Chen, Z., Yao, S., Williams-King, D.,

Ummadisetty, V., Yang, J., Ray, B., and Jana, S. StateFormer: fne-grained type

recovery from binaries using generative state modeling. In Proceedings of the 29th ACM

Joint Meeting on European Software Engineering Conference and Symposium on the

Foundations of Software Engineering (New York, NY, USA, Aug 2021), ESEC/FSE 2021,

Association for Computing Machinery, pp. 690–702.

[38] Pei, K., She, D., Wang, M., Geng, S., Xuan, Z., David, Y., Yang, J., Jana, S., and

Ray, B. NeuDep: neural binary memory dependence analysis. In Proceedings of the 30th

ACM Joint European Software Engineering Conference and Symposium on the Foundations

of Software Engineering (New York, NY, USA, Nov 2022), ESEC/FSE 2022, Association for

Computing Machinery, pp. 747–759.

[39] Pei, K., Xuan, Z., Yang, J., Jana, S., and Ray, B. Trex: Learning execution semantics

from micro-traces for binary similarity. CoRR abs/2012.08680 (2020).

[40] Puri, R., Kung, D. S., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V.,

Dolby, J., Chen, J., Choudhury, M. R., Decker, L., Thost, V., Buratti, L.,

Pujar, S., and Finkler, U. Project codenet: A large-scale AI for code dataset for learning

a diversity of coding tasks. CoRR abs/2105.12655 (2021).

[41] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou,

Y., Li, W., and Liu, P. J. Exploring the limits of transfer learning with a unifed

text-to-text transformer. Journal of Machine Learning Research 21, 140 (2020), 1–67.

122

[42] Ray, B., Hellendoorn, V., Godhane, S., Tu, Z., Bacchelli, A., and Devanbu, P.

On the naturalness of buggy code. In Proceedings of the 38th International Conference on

Software Engineering (New York, NY, USA, 2016), vol. 14-22-May- of ICSE ’16, ACM,

pp. 428–439.

[43] Reed, S., and de Freitas, N. Neural Programmer-Interpreters, Feb 2016. arXiv:

1511.06279.

[44] Souza, B., and Pradel, M. LExecutor: Learning-Guided Execution, Feb 2023. arXiv:

2302.02343.

[45] Wang, K., Singh, R., and Su, Z. Dynamic neural program embeddings for program

repair. In 6th International Conference on Learning Representations, ICLR 2018 -

Conference Track Proceedings (Feb 2018), pp. 1–12.

[46] Wang, K., and Su, Z. Blended, precise semantic program embeddings. In Proceedings of

the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation

(New York, NY, USA, Jun 2020), PLDI 2020, Association for Computing Machinery,

pp. 121–134.

[47] Wang, X., Wang, Y., Mi, F., Zhou, P., Wan, Y., Liu, X., Li, L., Wu, H., Liu, J.,

and Jiang, X. SynCoBERT: Syntax-Guided Multi-Modal Contrastive Pre-Training for

Code Representation, Sep 2021. arXiv:2108.04556.

[48] Wang, Y., Wang, W., Joty, S., and Hoi, S. C. CodeT5: Identifer-aware unifed

pre-trained encoder-decoder models for code understanding and generation. In Proceedings of

the 2021 Conference on Empirical Methods in Natural Language Processing, EMNLP 2021

(2021).

123

[49] Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P.,

Rault, T., Louf, R., Funtowicz, M., Davison, J., Shleifer, S., von Platen, P.,

Ma, C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger, S., Drame, M., Lhoest,

Q., and Rush, A. M. Huggingface’s transformers: State-of-the-art natural language

processing, 2020.

[50] Xu, F. F., Alon, U., Neubig, G., and Hellendoorn, V. J. A systematic evaluation of

large language models of code. arXiv preprint arXiv:2202.13169 (2022).

[51] Ye, H., Martinez, M., Luo, X., Zhang, T., and Monperrus, M. SelfAPR:

Self-supervised program repair with test execution diagnostics. In Proceedings of the 37th

IEEE/ACM International Conference on Automated Software Engineering (New York, NY,

USA, 2023), ASE ’22, Association for Computing Machinery.

[52] Ye, H., and Monperrus, M. ITER: Iterative neural repair for multi-location patches. In

Proceedings of the IEEE/ACM 46th International Conference on Software Engineering (New

York, NY, USA, 2024), ICSE ’24, Association for Computing Machinery.

[53] Zaremba, W., and Sutskever, I. Learning to execute, 2015. arXiv: 1410.4615.

[54] Zeller, A. Why Programs Fail: A Guide to Systematic Debugging. Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA, 2005.

[55] Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E., Yang, B., Laredo, J.,

Morari, A., and Su, Z. D2A: A dataset built for ai-based vulnerability detection methods

using diferential analysis. In Proceedings of the ACM/IEEE 43rd International Conference

on Software Engineering: Software Engineering in Practice (New York, NY, USA, 2021),

ICSE-SEIP ’21, Association for Computing Machinery.

[56] Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. Devign: Efective vulnerability

identifcation by learning comprehensive program semantics via graph neural networks.

Advances in Neural Information Processing Systems 32 (2019).

124

CHAPTER 5. TO ERR IS MACHINE: VULNERABILITY DETECTION

CHALLENGES LLM REASONING

Benjamin Steenhoek1 , Md Mahbubur Rahman2 , Monoshi Kumar Roy3 , Mirza Sanjida Alam4 ,

Hengbo Tong5 , Swarna Das6 , Earl Barr7 , and Wei Le8

1-6,8 Department of Computer Science, Iowa State University, Ames, IA, 50011

7 Department of Computer Science, University College London, London, United Kingdom

Modifed from a manuscript under review for the 13th International Conference on Learning

Representations (ICLR 2025)

Abstract

In this chapter, we present a challenging code reasoning task: vulnerability detection. Large

Language Models (LLMs) have shown promising results in natural-language and math reasoning,

but state-of-the-art (SOTA) models reported only 54.5% Balanced Accuracy in our vulnerability

detection evaluation, even those models pre-trained on large amounts of source code. Our error

analysis on LLM responses shows that the models struggle to reason about the code semantics

relevant to identifying vulnerabilities, especially subtle semantic diferences caused by small

textual changes. We explored prominent models and training settings to understand their efects

on vulnerability detection performance — including better prompts, larger models, more

pre-training data, and fne-tuning — but none led to signifcant improvements. This raises the

question of whether simply scaling training data and model size will allow us to “solve” complex

code reasoning tasks like vulnerability detection, or if a fundamental shift in modeling and

training techniques is required. We also explored adding domain knowledge to prompts; although

it helped certain models understand some code semantics, vulnerability detection requires

multi-step reasoning, and these models still failed in steps, such as reasoning about variable

125

relations. Our results suggest that new models, new training methods, or more execution-specifc

pretraining data may be needed to conquer vulnerability detection. We speculate that

auto-regressive pre-training on source code may not efectively extract code semantics, especially

on the current pretraining mixtures, in which execution data is scarce. Success on vulnerability

detection as a code reasoning task can beneft many areas of software engineering such as

debugging, test input generation, and program repair. Our code and data are available at

https://doi.org/10.6084/m9.figshare.27368025.

5.1 Introduction

Thousands of new software vulnerabilities are discovered each year, costing users and

companies millions of dollars [37]. This makes vulnerability detection critically important for

software security. Since Devign in 2019 [64], many deep learning approaches have been proposed

to predict the presence of vulnerabilities, but model performance has not breached 70% F1 score

on realistic datasets [7]. In this chapter, we show that though existing LLMs achieve impressive

results on math, natural language, code reasoning and code generation tasks [48, 9, 19, 6] they

struggle to detect vulnerabilities (Section 5.2). We show that vulnerability detection is a complex

code reasoning challenge, requiring both multi-step analysis and an accurate understanding of

code semantics. This chapter makes the case that vulnerability detection presents a compelling

new target task for the ML community; solving it could signifcantly impact related software

engineering tasks, such as debugging, test input generation, and program repair, thereby

enhancing developer productivity. Furthermore, improving LLM’s ability to reason about code

and identify vulnerabilities could potentially drive progress in broader reasoning tasks.

As shown in Figure 5.3, to detect a vulnerability, a developer frst needs to accurately locate

the statements relevant to a potential vulnerability. Second, a developer must understand the

semantics of those relevant statements, which requires domain knowledge, such as recognizing

bounds/NULL checks and understanding the efects of string, pointer, and arithmetic operations.

Sometimes only a single operator distinguishes vulnerable and non-vulnerable versions of code,

https://doi.org/10.6084/m9.figshare.27368025

126

1 get_next_file(FILE *VFile, char *ptr) {
2 char *ret;
3 ret = fgets(ptr, PATH_MAX, VFile);
4 if (!ret)return NULL;
5
6 - if (ptr[strlen(ptr) - 1] == '\n')
7 - ptr[strlen(ptr) - 1] = '\0';
8 + size_t len = strlen (ptr);
9 + if (len > 0 && ptr[len - 1] == '\n')

10 + ptr[len - 1] = '\0';
11 return ret;
12 }

1 mrb_class_real(struct RClass* cl) {
2 if (cl == 0) return NULL;
3 cl->super = NULL;
4 // ...
5 while ((cl->tt == MRB_TT_SCLASS) || (cl->tt ==

MRB_TT_ICLASS) ,→
6) {
7 cl = cl->super;
8 + if (cl == 0) return NULL;
9 }

10 return cl;
11 }

Figure 5.1. Bufer Overfow (BOF). To Figure 5.2. Null-Pointer Dereference (NPD). To
detect this vulnerability in the vulnerable detect this vulnerability in the vulnerable ver-
version, the model/developer takes several sion, the model/developer takes several reasoning
reasoning steps: (step 1) identify the BOF- steps: (step 1) identify the relevant statements,
relevant statements, e.g., bufer allocation e.g. the assignments cl->super = NULL in line 3
in line 3 and access in line 6; (step 2) un- and cl = cl->super in line 7, and dereference
derstand that the allocated bufer may be of cl in line 5; (step 2) understand that in line 3,
empty depending on user input and that cl->super is set to NULL; (step 3) connect the
strlen(ptr) returns 0 in line 6 if the bufer facts, recognizing that after assigning cl to NULL
is empty; (step 3) connect the facts, recog- in line 7, it will be dereferenced when the loop con-
nizing that if the bufer is empty, then line 6 dition is evaluated in line 5, causing a NPD. In the
will access index -1, causing a BOF. In the patched version, the model/developer should rec-
patched version, the model/developer should ognize in step (2) that line 8 checks if cl is NULL
recognize in step (2) that line 9 checks the and returns safely, thus there is no vulnerability.
length of the bufer before accessing it, and
therefore, step 3 concludes that this vulner-
ability is not exploitable.

Figure 5.3. Examples of vulnerability detection as a complex code reasoning task. Difed lines
(+/-) show the lines changed to patch the vulnerability.

and efective vulnerability detection requires understanding these nuances of program semantics.

Finally, the developer must logically connect the individual facts about the statements to infer

whether a vulnerability exists. This last step requires reasoning about the ranges of values and

the temporal relations of symbolic variables, and then comparing them to the application’s

security policy, which is often implicit.

These steps are challenging for LLMs, both individually and in combination. We studied 14

SOTA LLMs and 7 prompting methods on SVEN [21], a high-quality, real-world dataset

127

consisting of 386 vulnerable functions and their corresponding fxed versions, covering 772

programs. We found that all models and prompts performed close to random guessing (50-55%

Balanced Accuracy) (Section 5.2). Even GPT-4, a SOTA model, couldn’t distinguish vulnerable

code from its fxed version for 67.4% cases.

After manually analyzing 300 of the LLM responses (Section 5.3), we found errors occurring

at all three steps of the reasoning process. For instance, in step 1, localization, the models

frequently (50% of inspected functions) failed to recognize bounds or NULL checks, resulting in

false positives. Explicit marking of bounds checks is easily done by humans but seems to be

difcult for LLMs to recognize. In step 2, LLMs misinterpreted string, pointer, and integer

operations in 10%, 6%, and 8% of functions, respectively. Understanding bounds/NULL checks

and the operations requires a precise understanding of code execution semantics, which LLMs

generally struggle with [19]; our results confrm this fnding and further indicate which structures

were most challenging. We attribute the models’ lack of understanding of code semantics, even

after using various prompting methods, to two key factors: (1) the models may have limited

exposure to execution data during pre-training, which restricts their ability to learn semantics

directly – although LLMs might acquire some semantic understanding indirectly from simple

executions aligned with code text, or developer’s discussions about semantics; and (2) the current

autoregressive pre-training methods face inherent difculty of learning execution semantics from

code text alone. This is likely why we observe that scaling up model size or dataset volume, and

performing fne-tuning, did not signifcantly improve performance (Sections 5.3.1 and 5.3.2); since

the necessary data are not in the dataset, it is unlikely that LLMs can learn this complex

reasoning via scaling alone. Annotating code semantics in prompts reduced some of these errors in

certain models (Section 5.3.3), but determining vulnerabilities require a multi-step analysis. There

are errors in other reasoning steps can further prevent the detection. We show that in step 3,

LLMs frequently failed at multi-step logical reasoning, leading to inconsistent or non-sequential

inferences in 9% of responses.

128

To the best of our knowledge, this chapter is the frst to utilize vulnerability detection to

systematically explore the capabilities of existing LLMs to reason about complex code properties.

Ullah et al. [51] compared GPT-4’s responses with human-written vulnerability summaries using

metrics like BLEU, ROUGE, and GPT-4 evaluations, but did not delve into the specifc failure

modes which occurred in responses. Yu et al. [58] and Nong et al. [38] examined GPT-4 and

GPT-3.5’s responses about vulnerabilities but did not perform systematic studies on a set of

models, and on the impact of model sizes, training data, training methods, and adding domain

knowledge. We classifed the errors based on the challenges of reasoning steps, resulting in

categories which are more fne-grained and actionable; we explored mitigating a specifc type of

error using a prototype with CoT-Annotations, as discussed in Section 5.3.3.

In summary, we make the following contributions:

(1) We clarify vulnerability detection as a complex reasoning challenge;

(2) We demonstrate that current SOTA LLMs severely underperform in vulnerability detection,

achieving only 50-55% balanced accuracy at best;

(3) Through manual analysis of hundreds of LLM responses, we reveal that LLMs struggle with

all stages of reasoning, particularly in understanding semantics of statements involving

bounds/NULL checks, string operations, and pointer handling, which contributes signifcantly to

their poor performance;

(4) We show that these reasoning failures and low performance cannot be easily mitigated by

increasing model size, improving training data, and applying fne-tuning, even when the model is

provided with domain-specifc knowledge.

The fact that vulnerability detection exposes the limitations in current models’ abilities to

reason about vulnerabilities, coupled with the availability of well-defned vulnerability data,

makes vulnerability detection an ideal benchmark for evaluating and challenging LLM reasoning

capabilities.

129

5.2 Can LLMs Efectively Detect Vulnerabilities?

Prompts: We used the baseline prompting methods including Basic (zero-shot) [16] and

In-context (n-shot) [30, 63] prompts. We used a system prompt to set the context and instructions

including the vulnerability defnition [35] and the program source code (see Section 5.A for

details).

We designed three additional prompting methods that leverage the metadata available in

vulnerability datasets to encourage reasoning and provide the domain knowledge to the model,

namely: (1) In-context examples from contrastive pairs (Contrastive), which uses pairs before and

after a bug-fx as in-context examples, with the goal of instructing the model the fne-grained

diferences which caused the bug, (2) Chain-of-Thought from CVE descriptions (CoT-CVE),

which uses CVE bug reports [10] from the Big-Vul dataset [13], prompting the model to respond

with the explanations of vulnerability, and (3) Chain-of-Thought from static analysis

(CoT-StaticAnalysis), which adapts vulnerability proofs output by a static analyzer [3] as

reasoning steps for the example response, conditioning the model to reason step-by-step. We

obtained the proofs from the D2A dataset [62] (see Section 5.A for details).

Prompt
Basic Random Embedding

Contrastive CoT-CVE CoT-StaticAnalysis Random-guess baseline

Figure 5.4. Vulnerability detection performance. Bar height shows the average performance of
three random seeds and error bars show standard deviations; stars () mark the best-performing
prompt for each model.

130

SVEN HumanEval CruxEval GSM8k CSQA

Model (params) Vuln. detection Code gen. Code execution Math NL reasoning

StarChat 50.9 - - - -
LLAMA 2 (34b) 51.2 22.6 - 42.2 -
StarCoder (15.5b) 52.2 45.8 34.2 - -
Mistral (7b) 51.4 30.5 34.3 36.5 62.5
Mixtral (8x7b) 51.9 40.2 40.5 58.4 86.7
Code LLAMA (34b) 52.6 48.8 42.4 - -
WizardCoder (33b) 52.4 59.8 43.4 - -
MagiCoder (7b) 50.9 70.7 44.4 - -
StarCoder2 (16b) 54.5 46.3 47.1 - -
GPT-3.5-turbo 51.8 64.9 49.4 57.1 85.5
DeepSeek (33b) 52.1 69.2 49.9 - -
GPT-4-turbo 52.9 87.1 68.7 87.1 95.3
Gemini 1.0 Pro 52.1 67.7 - 86.5 84.7
StarChat2 53.6 71.3 - - -

Table 5.1. Performance on vulnerability detection vs. NL/math reasoning, code generation, and code
execution. Sources for code, math, and NL reasoning performance are cited in Section 5.C.

Models: We evaluated 14 LLMs which are the SOTA in code generation, based on several

surveys [61, 29] and the HumanEval leaderboard [42] (as of March 2024). The models include

LLAMA 2 [49], Code LLAMA [44], StarCoder [28], StarChat [50], StarCoder2 [31],

StarChat2 [22], Mistral [24], Mixtral [25], MagiCoder [54], Wizardcoder [32], DeepSeek-Coder[20],

GPT-3.5 [39], GPT-4 [40], and Gemini 1.0 Pro [18]. See Section 5.B for details.

Benchmark and Metrics: We used the SVEN dataset [21], which contains 772 vulnerable and

fxed functions from real-world C/C++ projects (average length = 168 lines). Existing

vulnerability datasets contain a lot of noise; SVEN contains vulnerabilities selected from multiple

benchmarks, and are reported to be 93% accurate [11]. Considering that the commonly used F1

score can bias towards models which predict vulnerable more often [63], we used Balanced

correctvul correctnvul Accuracy [1] (defned as (+)/2) to evaluate the models. examplesvul examplesnvul

Results: Figure 5.4 shows the performance of the baseline methods and our proposed prompts.

While our new prompts slightly improved the best-case performance for 11 out of 14 models, with

Contrastive prompts enhancing 8 out of 14, none of the models or prompts exceeded the

random-guessing baseline (Balanced Accuracy = 50) by more than 5% Balanced Accuracy. In

131

doubt of whether the complexity of the real-world code is the main challenging factor, we studied

simple code examples (25 lines per function on average) from the CWE and SARD

databases [35, 36] and found that the models still did not predict simple functions correctly,

reporting 42-67% Balanced Accuracy across all the models (see Section 5.D). Table 5.1 compares

the models’ vulnerability detection performance with their performance in other domains. While

new models have made steady advances in code generation [6], code execution [19], NL

reasoning [48], and math reasoning [9], their vulnerability detection performance has not

increased in step, remaining close to the random-guess baseline. This result implied that the

until-now successful strategies of scaling model size and training data have not yet proven to be

sufcient to solve vulnerability detection; to further confrm this, we investigated further in

Sections 5.3.1 and 5.3.2.

Table 5.2. Models’ abilities to distinguish pairs of vulnerable and non-vulnerable examples. Cell values
display the number and percentage of pairs in each category.

Distinguished
Model Can’t Distinguish Both Correct Both Wrong

StarChat 86.1% 7.9% 6.1%
DeepSeek 82.5% 6.3% 11.2%
StarCoder 82.1% 12.5% 5.4%
GPT-3.5-turbo 80.9% 11.3% 7.8%
LLAMA 2 76.5% 15.6% 8.0%
MagiCoder 75.2% 11.9% 12.9%
Mixtral 67.8% 18.3% 13.9%
GPT-4-turbo 67.4% 18.9% 13.7%
Gemini 64.4% 19.1% 16.5%
Mistral 61.8% 20.6% 17.6%
StarChat2 61.4% 21.0% 17.6%
StarCoder2 57.5% 19.0% 23.5%
Code LLAMA 57.3% 22.3% 20.4%
WizardCoder 55.0% 23.8% 21.1%

Average 69.7% 16.3% 14.0%

Table 5.2 presents our results on the models’ capabilities of distinguishing pairs of vulnerable

code and its fxed version. In the table, under Column Can’t Distinguish, we show that, on

average across all the models, 69.7% of pairs could not be distinguished, indicating that the

models do not understand the nuanced semantics of the vulnerability. Some models/prompts were

132

better than average, but at best, 55.0% of pairs could not be distinguished. The Both Correct and

Both Wrong columns indicate that the models predicted both versions correctly in some instances

(16.3% of pairs), but there were also cases (14.0% of pairs) where the models predicted both

versions incorrectly.

5.3 Why do LLMs Fail to Reason About Vulnerabilities?

We manually inspected 300 vulnerable predictions (covering 100 programs) from 14 models,

regarding the vulnerability reasoning steps, including locating and understanding the semantics of

statements related to vulnerability decisions, as well as the logical reasoning that can integrate

variable values and relations, and compare them with the security policy. To reduce subjectivity,

our manual inspection used independent ratings from three authors, following Islam et al. [23], and

adopted best practices for inductive coding [45]. See Section 5.E.3 for the details of our protocol.

Does the response contain an error?
No Yes

Figure 5.5. Error categories observed in responses from all LLMs. Bar width shows the number
of responses that contained the category of error. One response can contain more than one type of
error.

Figure 5.5 summarizes the errors. The results show that LLMs had some successes in

reasoning, with 44% of responses containing no observed errors; however, still more than half of

the responses contained an error in at least one step. LLMs made errors on localizing and

understanding individual statements for 43% examples; this causes them to make faulty inferences

about the efects of the code and fag potential vulnerabilities in safe code. LLMs also made

133

Table 5.3. Error analysis from 300 responses covering 100 programs. We analyzed the errors
manually using the rubric and inter-rater agreement procedure detailed in Section 5.E.

Reasoning step Error Count

(1,2) Localizing and
understanding statements
related to vulnerability

Misunderstood Bounds/NULL check
Misunderstood string operation
Misunderstood arithmetic operation
Misunderstood pointer operation
Misunderstood alloc/free operation
Misunderstood index operation
Misunderstood execution order
Improper assumption
Misunderstood syntax

80/159 (50%)
3/29 (10%)
8/96 (8%)
9/147 (6%)
4/81 (5%)
1/60 (2%)

11
8
6

Total 125

(3) Logical reasoning Faulty implication (⇒)
Inconsistent (⊥)

14
14

Total 28

Cross-cutting errors Hallucination
Memorization
Repetition

15
11
5

Total 31

cross-cutting errors such as hallucination and repetition 10% of the time and made incorrect

logical inferences 9% of the time.

The LLMs frequently made errors related to several specifc code structures, shown in

Table 5.3. For example, out of 159 responses explaining bounds/NULL checks, 80 (50%) were

incorrect. The semantics of bounds/NULL checks are critically important for determining

whether several pertinent vulnerabilities exist, including bufer overfow, null-pointer dereference,

and use after free. Such checks often follow predictable code patterns and thus are relatively

simple for developers and static analysis tools to identify — we used static analysis to recognize

them in Section 5.3.3 — however, the LLMs often failed to recognize these patterns. In addition,

the models face challenges of understanding the semantics of operations; for example, the models

incorrectly interpreted 10% string operations and 8% of arithmetic operations, which are

necessary for reasoning about bufer overfow and integer overfow vulnerabilities.

134

Figure 5.6. Missed Bounds/NULL check.

In Figure 5.6, StarChat reported that there is an unchecked null-pointer dereference at line 5

(p->lineinfo[oldpc]). However, it overlooked the safety check at line 2, where null values for

p->lineinfo are handled safely. Figure 5.7 provides an example of a Misunderstood arithmetic

operation error. GPT-4 correctly identifed the bounds-check at line 6, which had been added by

developers to prevent overfows [34]. However, the LLM failed to reason about the calculation of

the argument value to AllocChunk at line 9. Given the upper bound of 0x7fff for nSamples+1

and nPatches+1, even the maximum values would not cause an overfow in an unsigned integer

(0x7fff ∗ 0x7fff ∗ 8 = 0xfff80008), so the LLM’s alert is a false positive.

As a follow-up to the error analysis, we conducted a form of natural experiment [55] to

compare various LLMs and assess whether prominent training strategies improved vulnerability

performance. This study design enabled us to evaluate each training strategy independently while

controlling other variables. We compared models of diferent sizes (Section 5.3.1) and models

trained with varying data and training methods, including increased training data volume, code

vs. NL training data, instruction fne-tuning, and adapter fne-tuning (Section 5.3.2). We also

investigated the use of external tools (Section 5.3.3) to add domain knowledge targeting the types

of reasoning errors we found in Table 5.3.

135

Figure 5.7. Misunderstood arithmetic operation.

5.3.1 Does Model Size Matter?

We evaluated several models which released diferent sizes: LLAMA 2 (7b, 13b), Code

LLAMA (7b, 13b, 34b), Mistral 7b vs. Mixtral 8x7b, and DeepSeek-Coder (1.3b, 6.7b, and 33b).

Figure 5.8 shows that model performance did not signifcaly improve by scaling up the model size,

and we found that there was no statistical correlation between model size and performance

(R2 = 0.02, p = 0.72). We manually analyzed the responses using the methodology in Section 5.3

and found that all models had error rates similar to those shown in Figure 5.5, although larger

models were better at following in-context prompts. For example, Code LLAMA 7b, often

analyzed the in-context examples instead of the queried example; this error happened less

frequently with Code LLAMA 13b, and not at all with Code LLAMA 34b. This aligns with

previous results [52] showing that in-context learning is an emergent property of larger models.

136

Model class
Mistral DeepSeek-Coder
Code LLAMA LLAMA 2
Regression

Figure 5.8. Larger models did not improve on vulnerability detection.

5.3.2 Do Model Training Data & Methods Matter?

Figure 5.9a (top), General-purpose vs. code training data: Models trained mainly on

natural language may lack the knowledge of code seen in models which have been fne-tuned on

code. This raises the question: do models specialized for code outperform general-purpose models?

To explore this, we compared LLAMA 2, designed as a general-purpose chat assistant [49],

against Code LLAMA, which was initialized from the base weights of LLAMA 2 and further

fne-tuned on code [44]. Figure 5.9a (top) shows that code-specialized training did not

substantially improve Code LLAMA’s vulnerability detection capability.

Figure 5.9a (bottom), Training on more data: HuggingFace’s Bigcode team released

StarCoder and its updated version, StarCoder2, with the primary diference being that

StarCoder2 trained on more than twice as much code [31]. This setup provides a relatively

controlled environment to assess the impact of this additional training data. Figure 5.9a (bottom)

indicates that scaling up the dataset resulted slightly improved StarCoder2’s vulnerability

detection capability, but yielded only a 4% improvement.

137

Dataset Training method

Less data General-purpose Base Prompting
More data Code Instruct Fine-Tuning

(a) Data volume & modality (b) Instruction fne-tuning (c) Adapter fne-tuning

Figure 5.9. Expanding the training dataset and incorporating fne-tuning had minimal impact on
vulnerability detection capability.

Figure 5.9b, Instruction fne-tuning : Instruction fne-tuning can improve the truthfulness

and relevance of responses [41], as well as performance and generalization [8]. This leads us to ask:

do instructed models perform better than their base counterparts? We compared the base

versions of DeepSeek Coder, StarCoder2, and Code LLAMA against their instruction fne-tuned

counterparts, namely WizardCoder, StarChat2, and Code LLAMA-Instruct/MagiCoder

respectively, and found no substantial diference in performance (Figure 5.9b), indicating that

instruction fne-tuning did not improve vulnerability detection performance, even though our

vulnerability detection prompts are tailored for instruction-tuned models.

Figure 5.9c, Adapter fne-tuning: We fne-tuned the StarCoder2 7b model using the

vulnerability dataset PrimeVul [11] (the cleanest supervised dataset large enough for fne-tuning)

and compared it with the base 7b model using the Basic prompt on SVEN. We evaluated the

models on balanced and imbalanced label distributions, following Chakraborthy et al. [4].

Figure 5.9c shows that fnetuning did not substantially improve the model’s performance in either

138

case; the fne-tuned model performed worse on balanced data and only 1.2% better on imbalanced

data.

5.3.3 Does Additional Domain Knowledge Help?

CoT-Annotations prompt for the source code in Figure 5.2

Code Explanation: The pointer cl is passed as parameters in this function, which could be null. In
line cl->super = NULL, the pointer cl->super is assigned to NULL. In line while ((cl->tt ==
MRB TT SCLASS)..., the pointer cl is dereferenced. The function has a NULL check in line if (cl
== 0) return NULL; for the pointer cl.
Instructions: For the Query Example only, think step-by-step using these steps, then give an answer
based on the Code Explanation. Assume pointers which are passed in will not cause a null-pointer
dereference.
1. identify which locations pointers are likely to be null.
2. identify which of these are dereferenced.
3. identify which of these dereferences of potentially-null pointers are checked and handled. Filter
these out.
4. if any unchecked dereferences remain, then the function is vulnerable. Otherwise, the function is
not vulnerable.

Example response

Reasoning: The function dereferences the pointer cl without checking if it is NULL. cl may be
assigned to NULL in the line cl = cl->super. If cl is NULL, the function will crash when it tries
to access the feld cl->tt in the loop condition.
Answer: Yes, the function is buggy.

Figure 5.10. Example of our CoT-Annotations prompt using the NPD vulnerability from Figure 5.2. CoT-
Annotations uses static analysis to provide information to the model (top) and provides reasoning example
responses to encourage reasoning (bottom). We annotate null assignments, parameters, and dereferences to
help the model to detect potential null-pointer dereferences and annotate null-checks to prevent the model
from making false positive predictions.

Table 5.3 indicates that one of the important challenges that prevented LLMs from detecting

vulnerabilities is their incapability of understanding bounds/NULL checks and pointer operations.

Thus, we developed Chain-of-Thought with Annotations (CoT-Annotations), shown in

Figure 5.10. We introduced an external static analysis tool which annotates the code to highlight

possible NULL assignments to pointers, NULL checks, on pointers, and dereferences of pointers.

These annotations provide the exact information that defnes the vulnerability and that a domain

139

expert would use to identify NULL-pointer dereference vulnerabilities. We integrated such

knowledge into the prompt and evaluated performance on detecting Null-Pointer Dereference

(NPD) vulnerabilities for the models we studied above, as a case study. As a quality measure, we

manually verifed the static analysis output and excluded incorrect annotations caused by

heuristic errors.

Prompt
Without additional knowledge With additional knowledge

(a) Reasoning errors related to bounds/NULL
checks.

(b) Vulnerability detection performance.

Figure 5.11. Domain knowledge is somewhat helpful for one step but not much for overall perfor-
mance. Some models, e.g., CodeLLAMA, respond to the annotated knowledge better: from a case
study on NPD vulnerabilities.

By analyzing a sample of 198 responses1 with/without annotations, we observed that

CoT-Annotations reduced the errors of bounds/NULL checks recognition by 15-70% for Code

LLAMA, MagiCoder, and Mistral, shown in Figure 5.11a; however, these models still missed

23-67% of bounds checks. We also observed that the improvement of understanding

bounds/NULL checks did not signifcantly improve the models’ performance (see Figure 5.11b).

We speculate that this is because there are other blocking issues such as logical reasoning about

relations of variables.
1This sample represents the intersection of vulnerable responses across all six models, with a maximum of 25

responses per model. We used the error categories established in Section 5.3, with each rater analyzing one-third of
the responses (each response was reviewed by a single rater due to time constraints).

140

5.4 Related Work

Recent studies have initiated investigation into the usage of LLMs for vulnerability detection,

using zero-shot prompting [43, 16], in-context learning [17, 30, 5], and fne-tuning [46, 59, 57].

Several papers have utilized chain-of-thoughts (CoT), such as “Let’s think

step-by-step” [27, 14, 47], multi-step prompts [51, 58], and generic information such as CFG,

DFG, PDG, and API calls [60, 38, 26, 51]. In this work, we studied the most common prompting

methods and proposed four novel prompt approaches tailored for vulnerability detection,

integrating information from bug-fx commits (contrastive pairs), CVE descriptions (CoT-CVE),

static analysis reports (CoT-StaticAnalysis), and domain knowledge annotations

(CoT-Annotations). We further studied the LLMs’ capabilities to distinguish buggy and patched

versions of code and studied the reasoning errors in their responses.

Several recent papers have analyzed errors in LLM-generated vulnerability detection

responses. Ullah et al. [51] used BLEU, ROUGE, and GPT-4 to automatically compare GPT-4’s

reasoning summaries with human-generated ones. Yu et al. [58] and Nong et al. [38] examined

82-100 responses from GPT-4 and GPT-3.5, supporting our fndings that the models struggled

with correctness, logic and consistency in general. However, existing studies do not match the

depth and breadth of ours. Our error classifcations provide more actionable and detailed

categories, enabling us to identify specifc code structures and LLM weaknesses (see Table 5.3).

Additionally, we analyzed factors such as model size, training data, and training strategies,

providing cause for concern about future improvements from model scaling. To our knowledge,

our study is the most comprehensive manual analysis of LLMs for vulnerability detection,

including 14 models and manually analyzing 300 LLM responses with a rigorous multi-rater

agreement protocol.

5.5 Conclusion

In this chapter, we have show that vulnerability detection is complex, multistage reasoning

task that current LLMs struggle to solve. We conducted a thorough study to show that the SOTA

141

models and prompts performed only slightly better than random guessing. None of the model

advancements we explored led to signifcant improvements, including increasing model size,

expanding training data, and instruction/adapter fne-tuning. The models particularly struggled

to distinguish between vulnerable and fxed versions of code, where small textual diferences cause

large changes in semantics. We demonstrated that external tools and domain knowledge helped

somewhat with single-step reasoning, but did not signifcantly improve the models’ performance,

which depends on accurate multi-step reasoning. Our fndings bring concerns about further

research in this area, raising the question of whether auto-regressively pre-trained LLMs are a

good ft for tasks which require deep understanding of code semantics. We suggest that a

fundamental shift in modeling and training methods may be necessary in order to overcome the

reasoning failures of current LLMs. We believe that solving code reasoning in vulnerability

detection could help address many other challenging tasks in software engineering, such as

debugging, code execution prediction, test input generation, and program repair. We hope that

this chapter laid out some key insights and motivation for the machine learning community to

solve this important challenge.

5.6 Bibliography

[1] Brodersen, K. H., Ong, C. S., Stephan, K. E., and Buhmann, J. M. The balanced

accuracy and its posterior distribution. In 20th International Conference on Pattern

Recognition (2010), ICPR ’10, pp. 3121–3124.

142

[2] Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,

Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,

A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D., Wu, J.,

Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,

Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei,

D. Language models are few-shot learners. In Advances in Neural Information Processing

Systems (2020), H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, Eds., vol. 33,

Curran Associates, Inc., pp. 1877–1901.

[3] Calcagno, C., and Distefano, D. Infer: An automatic program verifer for memory

safety of c programs. In NASA Formal Methods Symposium (2011), Springer, pp. 459–465.

[4] Chakraborty, S., Krishna, R., Ding, Y., and Ray, B. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering 48,

09 (Sept. 2022), 3280–3296.

[5] Chan, A., Kharkar, A., Moghaddam, R. Z., Mohylevskyy, Y., Helyar, A.,

Kamal, E., Elkamhawy, M., and Sundaresan, N. Transformer-based vulnerability

detection in code at edittime: Zero-shot, few-shot, or fne-tuning?, 2023. arXiv: 2306.01754.

143

[6] Chen, M., Tworek, J., Jun, H., Yuan, Q., de Oliveira Pinto, H. P., Kaplan, J.,

Edwards, H., Burda, Y., Joseph, N., Brockman, G., Ray, A., Puri, R., Krueger,

G., Petrov, M., Khlaaf, H., Sastry, G., Mishkin, P., Chan, B., Gray, S., Ryder,

N., Pavlov, M., Power, A., Kaiser, L., Bavarian, M., Winter, C., Tillet, P.,

Such, F. P., Cummings, D., Plappert, M., Chantzis, F., Barnes, E.,

Herbert-Voss, A., Guss, W. H., Nichol, A., Paino, A., Tezak, N., Tang, J.,

Babuschkin, I., Balaji, S., Jain, S., Saunders, W., Hesse, C., Carr, A. N., Leike,

J., Achiam, J., Misra, V., Morikawa, E., Radford, A., Knight, M., Brundage, M.,

Murati, M., Mayer, K., Welinder, P., McGrew, B., Amodei, D., McCandlish, S.,

Sutskever, I., and Zaremba, W. Evaluating large language models trained on code,

2021. arXiv: 2107.03374.

[7] Chen, Y., Ding, Z., Alowain, L., Chen, X., and Wagner, D. DiverseVul: A new

vulnerable source code dataset for deep learning based vulnerability detection. In Proceedings

of the 26th International Symposium on Research in Attacks, Intrusions and Defenses (New

York, NY, USA, 2023), RAID ’23, Association for Computing Machinery, p. 654–668.

[8] Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fedus, W., Li, Y., Wang,

X., Dehghani, M., Brahma, S., Webson, A., Gu, S. S., Dai, Z., Suzgun, M., Chen,

X., Chowdhery, A., Castro-Ros, A., Pellat, M., Robinson, K., Valter, D.,

Narang, S., Mishra, G., Yu, A., Zhao, V., Huang, Y., Dai, A., Yu, H., Petrov, S.,

Chi, E. H., Dean, J., Devlin, J., Roberts, A., Zhou, D., Le, Q. V., and Wei, J.

Scaling instruction-fnetuned language models. Journal of Machine Learning Research 25, 70

(2024), 1–53.

[9] Cobbe, K., Kosaraju, V., Bavarian, M., Chen, M., Jun, H., Kaiser, L., Plappert,

M., Tworek, J., Hilton, J., Nakano, R., Hesse, C., and Schulman, J. Training

verifers to solve math word problems, 2021. arXiv: 2110.14168.

[10] CVE. CVE Website. https://www.cve.org/, 2024.

https://www.cve.org/

144

[11] Ding, Y., Fu, Y., Ibrahim, O., Sitawarin, C., Chen, X., Alomair, B.,

David Wagner, B. R., and Chen, Y. Vulnerability detection with code language models:

How far are we? In Proceedings of the 47th International Conference on Software

Engineering (2025), ICSE ’25.

[12] Facebook. Infer Static Analyzer, 2024.

[13] Fan, J., Li, Y., Wang, S., and Nguyen, T. N. A C/C++ code vulnerability dataset

with code changes and CVE summaries. In Proceedings of the 17th International Conference

on Mining Software Repositories (New York, NY, USA, 2020), MSR ’20, Association for

Computing Machinery, p. 508–512.

[14] Feng, S., and Chen, C. Prompting is all you need: Automated android bug replay with

large language models. In ICSE (2024).

[15] Fleiss, J. L. Measuring nominal scale agreement among many raters. Psychological Bulletin

(1971).

[16] Fu, M., Tantithamthavorn, C., Nguyen, V., and Le, T. ChatGPT for vulnerability

detection, classifcation, and repair: How far are we? arXiv:2310.09810 (2023).

[17] Gao, Z., Wang, H., Zhou, Y., Zhu, W., and Zhang, C. How far have we gone in

vulnerability detection using large language models, 2023. arXiv: 2311.12420.

[18] Gemini Team. Gemini: A family of highly capable multimodal models. arXiv:2312.11805

(2023).

[19] Gu, A., Rozi` ere, B., Leather, H., Solar-Lezama, A., Synnaeve, G., and Wang,

S. I. CRUXEval: A benchmark for code reasoning, understanding and execution, 2024.

[20] Guo, D., Zhu, Q., Yang, D., Xie, Z., Dong, K., Zhang, W., Chen, G., Bi, X., Wu,

Y., Li, Y. K., Luo, F., Xiong, Y., and Liang, W. DeepSeek-Coder: When the large

language model meets programming – the rise of code intelligence, 2024.

145

[21] He, J., and Vechev, M. Large language models for code: Security hardening and

adversarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (New York, NY, USA, 2023), CCS ’23, Association for Computing

Machinery, p. 1865–1879.

[22] HuggingFaceH4 Team. HuggingFaceH4/starchat2-15b-v0.1.

https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1, 2024.

[23] Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. A comprehensive study on deep

learning bug characteristics. In Proceedings of the 27th ACM Joint Meeting on European

Software Engineering Conference and Symposium on the Foundations of Software

Engineering (New York, NY, USA, 2019), ESEC/FSE ’19, Association for Computing

Machinery, p. 510–520.

[24] Jiang, A. Q., Sablayrolles, A., Mensch, A., Bamford, C., Chaplot, D. S., de las

Casas, D., Bressand, F., Lengyel, G., Lample, G., Saulnier, L., Lavaud, L. R.,

Lachaux, M.-A., Stock, P., Scao, T. L., Lavril, T., Wang, T., Lacroix, T., and

Sayed, W. E. Mistral 7b, 2023. arXiv: 2310.06825.

[25] Jiang, A. Q., Sablayrolles, A., Roux, A., Mensch, A., Savary, B., Bamford, C.,

Chaplot, D. S., de las Casas, D., Hanna, E. B., Bressand, F., Lengyel, G.,

Bour, G., Lample, G., Lavaud, L. R., Saulnier, L., Lachaux, M.-A., Stock, P.,

Subramanian, S., Yang, S., Antoniak, S., Scao, T. L., Gervet, T., Lavril, T.,

Wang, T., Lacroix, T., and Sayed, W. E. Mixtral of experts, 2024. arXiv: 2401.04088.

[26] Khare, A., Dutta, S., Li, Z., Solko-Breslin, A., Alur, R., and Naik, M.

Understanding the efectiveness of large language models in detecting security vulnerabilities.

arXiv:2311.16169 (2023).

[27] Li, H., Hao, Y., Zhai, Y., and Qian, Z. The hitchhiker’s guide to program analysis: A

journey with large language models. arXiv:2308.00245 (2023).

https://huggingface.co/HuggingFaceH4/starchat2-15b-v0.1

146

[28] Li, R., Allal, L. B., Zi, Y., Muennighoff, N., Kocetkov, D., Mou, C., Marone,

M., Akiki, C., Li, J., Chim, J., Liu, Q., Zheltonozhskii, E., Zhuo, T. Y., Wang, T.,

Dehaene, O., Davaadorj, M., Lamy-Poirier, J., Monteiro, J., Shliazhko, O.,

Gontier, N., Meade, N., Zebaze, A., Yee, M.-H., Umapathi, L. K., Zhu, J., Lipkin,

B., Oblokulov, M., Wang, Z., Murthy, R., Stillerman, J., Patel, S. S.,

Abulkhanov, D., Zocca, M., Dey, M., Zhang, Z., Fahmy, N., Bhattacharyya, U.,

Yu, W., Singh, S., Luccioni, S., Villegas, P., Kunakov, M., Zhdanov, F.,

Romero, M., Lee, T., Timor, N., Ding, J., Schlesinger, C., Schoelkopf, H.,

Ebert, J., Dao, T., Mishra, M., Gu, A., Robinson, J., Anderson, C. J.,

Dolan-Gavitt, B., Contractor, D., Reddy, S., Fried, D., Bahdanau, D., Jernite,

Y., Ferrandis, C. M., Hughes, S., Wolf, T., Guha, A., von Werra, L., and

de Vries, H. StarCoder: may the source be with you!, 2023. arXiv: 2305.06161.

[29] Liu, X., Yu, H., Zhang, H., Xu, Y., Lei, X., Lai, H., Gu, Y., Ding, H., Men, K.,

Yang, K., Zhang, S., Deng, X., Zeng, A., Du, Z., Zhang, C., Shen, S., Zhang, T.,

Su, Y., Sun, H., Huang, M., Dong, Y., and Tang, J. AgentBench: Evaluating LLMs as

agents. In The Twelfth International Conference on Learning Representations (2024).

[30] Liu, Z., Liao, Q., Gu, W., and Gao, C. Software vulnerability detection with GPT and

in-context learning. In 2023 8th International Conference on Data Science in Cyberspace

(DSC) (2023), pp. 229–236.

147

[31] Lozhkov, A., Li, R., Allal, L. B., Cassano, F., Lamy-Poirier, J., Tazi, N., Tang,

A., Pykhtar, D., Liu, J., Wei, Y., Liu, T., Tian, M., Kocetkov, D., Zucker, A.,

Belkada, Y., Wang, Z., Liu, Q., Abulkhanov, D., Paul, I., Li, Z., Li, W.-D.,

Risdal, M., Li, J., Zhu, J., Zhuo, T. Y., Zheltonozhskii, E., Dade, N. O. O., Yu,

W., Krauß, L., Jain, N., Su, Y., He, X., Dey, M., Abati, E., Chai, Y.,

Muennighoff, N., Tang, X., Oblokulov, M., Akiki, C., Marone, M., Mou, C.,

Mishra, M., Gu, A., Hui, B., Dao, T., Zebaze, A., Dehaene, O., Patry, N., Xu, C.,

McAuley, J., Hu, H., Scholak, T., Paquet, S., Robinson, J., Anderson, C. J.,

Chapados, N., Patwary, M., Tajbakhsh, N., Jernite, Y., Ferrandis, C. M.,

Zhang, L., Hughes, S., Wolf, T., Guha, A., von Werra, L., and de Vries, H.

StarCoder 2 and the Stack v2: The next generation, 2024. arXiv: 2402.19173.

[32] Luo, Z., Xu, C., Zhao, P., Sun, Q., Geng, X., Hu, W., Tao, C., Ma, J., Lin, Q.,

and Jiang, D. WizardCoder: Empowering code large language models with evol-instruct.

arXiv:2306.08568 (2023).

[33] MITRE. CVE-2017-9211, 2024.

[34] MITRE. CVE-2018-16435, 2024.

[35] MITRE. CWE - Common Weakness Enumeration. https://cwe.mitre.org/index.html,

2024.

[36] NIST. NIST Software Assurance Reference Dataset. https://samate.nist.gov/SARD/,

2024.

[37] NIST. NVD - NVD Dashboard. https://nvd.nist.gov/general/nvd-dashboard, 2024.

[38] Nong, Y., Aldeen, M., Cheng, L., Hu, H., Chen, F., and Cai, H. Chain-of-Thought

prompting of large language models for discovering and fxing software vulnerabilities.

arXiv:2402.17230 (2024).

[39] OpenAI. gpt-3.5-turbo-0613 announcement, June 2023.

https://cwe.mitre.org/index.html
https://samate.nist.gov/SARD/
https://nvd.nist.gov/general/nvd-dashboard

148

[40] OpenAI. GPT-4 technical report, 2024. arXiv: 2303.08774.

[41] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin, P., Zhang,

C., Agarwal, S., Slama, K., Ray, A., Schulman, J., Hilton, J., Kelton, F.,

Miller, L., Simens, M., Askell, A., Welinder, P., Christiano, P. F., Leike, J.,

and Lowe, R. Training language models to follow instructions with human feedback. In

Advances in Neural Information Processing Systems (2022), S. Koyejo, S. Mohamed,

A. Agarwal, D. Belgrave, K. Cho, and A. Oh, Eds., vol. 35, Curran Associates, Inc.,

pp. 27730–27744.

[42] PapersWithCode. HumanEval Benchmark, 2023. [Accessed 27-10-2023].

[43] Purba, M. D., Ghosh, A., Radford, B. J., and Chu, B. Software vulnerability

detection using large language models. In IEEE 34th International Symposium on Software

Reliability Engineering Workshops (2023), pp. 112–119.

[44] Rozi` ere, B., Gehring, J., Gloeckle, F., Sootla, S., Gat, I., Tan, X. E., Adi, Y.,

Liu, J., Sauvestre, R., Remez, T., Rapin, J., Kozhevnikov, A., Evtimov, I.,

Bitton, J., Bhatt, M., Ferrer, C. C., Grattafiori, A., Xiong, W., Défossez, A.,

Copet, J., Azhar, F., Touvron, H., Martin, L., Usunier, N., Scialom, T., and

Synnaeve, G. Code Llama: Open foundation models for code, 2024.

[45] Salda˜ SAGE publications Ltd, 2021.na, J. The coding manual for qualitative researchers.

[46] Shestov, A., Levichev, R., Mussabayev, R., Maslov, E., Cheshkov, A., and

Zadorozhny, P. Finetuning large language models for vulnerability detection, 2024. arXiv:

2401.17010.

[47] Sun, Y., Wu, D., Xue, Y., Liu, H., Wang, H., Xu, Z., Xie, X., and Liu, Y. When

GPT Meets Program Analysis: Towards Intelligent Detection of Smart Contract Logic

Vulnerabilities in GPTScan, Aug. 2023. arXiv: 2308.03314.

149

[48] Talmor, A., Herzig, J., Lourie, N., and Berant, J. CommonsenseQA: A question

answering challenge targeting commonsense knowledge. In Proceedings of the 2019

Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers) (Minneapolis, Minnesota,

June 2019), J. Burstein, C. Doran, and T. Solorio, Eds., Association for Computational

Linguistics, pp. 4149–4158.

[49] Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi, A., Babaei, Y.,

Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D., Blecher, L.,

Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu,

W., Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A., Hosseini, S.,

Hou, R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I., Korenev,

A., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y., Mao,

Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton, A.,

Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith, E. M.,

Subramanian, R., Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,

Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang, S.,

Rodriguez, A., Stojnic, R., Edunov, S., and Scialom, T. Llama 2: Open foundation

and fne-tuned chat models, 2023. arXiv: 2307.09288.

[50] Tunstall, L., Lambert, N., Rajani, N., Beeching, E., Le Scao, T., Han, S.,

Schmid, P., Von Werra, L., and Rush, S. Creating a coding assistant with starcoder.

Hugging Face Blog (2023).

[51] Ullah, S., Han, M., Pujar, S., Pearce, H., Coskun, A., and Stringhini, G. Can

large language models identify and reason about security vulnerabilities? not yet.

arXiv:2312.12575 (2023).

150

[52] Wei, J., Tay, Y., Bommasani, R., Raffel, C., Zoph, B., Borgeaud, S., Yogatama,

D., Bosma, M., Zhou, D., Metzler, D., Chi, E. H., Hashimoto, T., Vinyals, O.,

Liang, P., Dean, J., and Fedus, W. Emergent abilities of large language models, 2022.

arXiv: 2206.07682.

[53] Wei, J., Wang, X., Schuurmans, D., Bosma, M., Ichter, B., Xia, F., Chi, E. H.,

Le, Q. V., and Zhou, D. Chain-of-thought prompting elicits reasoning in large language

models. In Proceedings of the 36th International Conference on Neural Information

Processing Systems (Red Hook, NY, USA, 2024), NIPS ’22, Curran Associates Inc.

[54] Wei, Y., Wang, Z., Liu, J., Ding, Y., and Zhang, L. Magicoder: Source code is all you

need. arXiv preprint arXiv:2312.02120 (2023).

[55] Wikipedia. Natural experiment. http:

//en.wikipedia.org/w/index.php?title=Natural%20experiment&oldid=1235833118,

2024. [Online; accessed 20-September-2024].

[56] Xie, S. M., and Min, S. How does in-context learning work? A framework for

understanding the diferences from traditional supervised learning.

https://ai.stanford.edu/blog/understanding-incontext/, 2022.

[57] Yang, A. Z. H., Le Goues, C., Martins, R., and Hellendoorn, V. Large language

models for test-free fault localization. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

[58] Yu, J., Liang, P., Fu, Y., Tahir, A., Shahin, M., Wang, C., and Cai, Y. An insight

into security code review with llms: Capabilities, obstacles and infuential factors, 2024.

arXiv: 2401.16310.

http://en.wikipedia.org/w/index.php?title=Natural%20experiment&oldid=1235833118
http://en.wikipedia.org/w/index.php?title=Natural%20experiment&oldid=1235833118
https://ai.stanford.edu/blog/understanding-incontext/

151

[59] Yusuf, I. N. B., and Jiang, L. Your instructions are not always helpful: Assessing the

efcacy of instruction fne-tuning for software vulnerability detection. arXiv:2401.07466

(2024).

[60] Zhang, C., Liu, H., Zeng, J., Yang, K., Li, Y., and Li, H. Prompt-enhanced software

vulnerability detection using chatgpt. In Proceedings of the 2024 IEEE/ACM 46th

International Conference on Software Engineering: Companion Proceedings (New York, NY,

USA, 2024), ICSE-Companion ’24, Association for Computing Machinery, p. 276–277.

[61] Zhao, W. X., Zhou, K., Li, J., Tang, T., Wang, X., Hou, Y., Min, Y., Zhang, B.,

Zhang, J., Dong, Z., Du, Y., Yang, C., Chen, Y., Chen, Z., Jiang, J., Ren, R., Li,

Y., Tang, X., Liu, Z., Liu, P., Nie, J.-Y., and Wen, J.-R. A survey of large language

models, 2024. arXiv: 2303.18223.

[62] Zheng, Y., Pujar, S., Lewis, B., Buratti, L., Epstein, E., Yang, B., Laredo, J.,

Morari, A., and Su, Z. D2A: A dataset built for ai-based vulnerability detection methods

using diferential analysis. In Proceedings of the ACM/IEEE 43rd International Conference

on Software Engineering: Software Engineering in Practice (New York, NY, USA, 2021),

ICSE-SEIP ’21, Association for Computing Machinery.

[63] Zhou, X., Zhang, T., and Lo, D. Large language model for vulnerability detection:

Emerging results and future directions. In Proceedings of the 2024 ACM/IEEE 44th

International Conference on Software Engineering: New Ideas and Emerging Results (2024),

pp. 47–51.

[64] Zhou, Y., Liu, S., Siow, J., Du, X., and Liu, Y. Devign: Efective vulnerability

identifcation by learning comprehensive program semantics via graph neural networks.

Advances in Neural Information Processing Systems 32 (2019).

152

5.A Appendix: Vulnerability detection prompts

Basic (zero-shot) prompting [16]: We frst designed a system prompt to set the context: “I

want you to act as a vulnerability detection system”, along with natural-language instructions:

(1) Basic query : “Is the following function buggy? Please answer Yes or No.” (We also tried “Is

the following function vulnerable?”; however, our pilot study shows that it did not perform as

well.) (2) CWE list : This prompt starts with “Does the following function contain one of the

following bug types?”, followed by a fxed list of bug types, e.g., “CWE-190: Integer Overfow”;

(3) Q/A: Begin the query with “Question:” and begin the model’s response with “Answer:”. This

conditions the model to respond in a question-answering mode.

In-context (n-shot) prompting[30, 63]: In this prompt, we provide examples of inputs and

responses for in-context learning [2]. The in-context examples condition the model to reply in the

same format as the example responses [56]. The selection of in-context examples can impact the

performance. We studied three settings: (1) randomly selected examples, (2) the examples that

had similar embeddings to the query example, and (3) the examples from contrastive pairs (see

below for details).

In-context prompting based on contrastive pairs: We formed contrasting pairs of

in-context examples by providing the vulnerable version of the code (before the bug-fxing

commit) and the fxed version (after the commit) as in-context examples in the same prompt.

Since these two versions of the source code difer primarily in the portion related to the bug-fx,

our intention is that this prompt template would highlight the cause of the bug and instruct the

model to learn that the small diferences in code can lead to diferent labels.

In-context prompting based on CoT from CVE descriptions: We designed

“chain-of-thought” prompts by providing intermediate reasoning steps which lead to the answer,

inspired by Wei et al. [53]. We use in-context examples from the Big-Vul dataset [13], which

includes the CVE bug reports. For vulnerable examples, we used the default in-context query and

provide the chain-of-thought response. To produce such response, we adapt the descriptions in

153

these bug reports to describe how the bug manifests. For example, CVE-2017-9211 [33] describes

the vulnerability, including the symptoms, attack surface, and variable involved:

The crypto skcipher init tfm function in crypto/skcipher.c in the Linux kernel through

4.11.2 relies on a setkey function that lacks a key-size check, which allows local users

to cause a denial of service (NULL pointer dereference) via a crafted application.

We use this description as the CoT response and append “Therefore, the example is buggy” to

complete the example response. For non-vulnerable examples, we provide the default in-context

example query/response.

In-context prompting based on CoT from static analysis: We also used the output buggy

paths reported by static analysis tools to prepare the chains of thought prompt. The buggy path

consists of a list of statements that can lead to the bug. We use in-context examples from the

D2A dataset [62], which lists buggy paths from the Infer static analyzer [12] for several

open-source C++ projects. We convert the buggy paths to natural language descriptions and use

them as the response. This is an example CoT response for a bufer overfow vulnerability:

1. A buffer buf of size 10 is allocated at line 1.

2. An index i is initialized to a value in the range [0, 100] at line 2.

3. The index i is used to access buf at line 3. This may exceed the bounds of buf.

We append “Therefore, the example is buggy” to complete the example response. For

non-vulnerable examples, we provide the default response.

5.B Appendix: Models

We used the model sizes shown in Table 5.4 and the text generation parameters shown in

Table 5.5 for our experiments. The model IDs are documented in our data package.

154

Table 5.4. 14 models we studied.

Model Parameters Context Length

GPT-4 [40] - 128k
Gemini 1.0 Pro [18] - 32k
GPT-3.5 [39] - 4k
Mixtral-MoE [25] 45B 8k∼128k
Code LLAMA [44] 7B, 13B, 34B 16k∼100k
LLAMA 2 [49] 7B, 13B 4k
WizardCoder [32] 33B 2k
DeepSeek-Coder [49] 1.3B, 6.7B, 33B 4k
StarChat2 [22] 15.5B 16k
StarCoder2 [22] 15.5B 16k
StarChat [50] 15.5B 8k
StarCoder [28] 15.5B 8k
MagiCoder [54] 7B 16k∼100k
Mistral [24] 7B 8k∼128k

Table 5.5. Text generation parameters we used.

Parameter HuggingFace OpenAI Google

Top-p
Temperature
Max. tokens generated

0.9
0.1
512

1.0
0.1
512

1.0
0.1
512

5.C Appendix: Benchmarks for other domains

We gathered the benchmark performance results for Table 5.1 from public benchmarks and

from the papers associated with each model:

• CruXeval: https://crux-eval.github.io/leaderboard.html

• HumanEval: https://paperswithcode.com/sota/code-generation-on-humaneval

• GSM8k: reported in the models’ papers [49, 24, 25, 39, 40, 18].

• CSQA: reported in the models’ papers [24, 25, 39, 40, 18].

https://crux-eval.github.io/leaderboard.html
https://paperswithcode.com/sota/code-generation-on-humaneval

155

Integer Overfow

1 int determineFirstQuarterRevenue()
2 {
3
4 // Variable for sales revenue for the quarter
5 float quarterRevenue = 0.0f;
6
7 short JanSold = getMonthlySales(JAN); /* Get sales in January */
8 short FebSold = getMonthlySales(FEB); /* Get sales in February */
9 short MarSold = getMonthlySales(MAR); /* Get sales in March */

10
11 // Calculate quarterly total
12 short quarterSold = JanSold + FebSold + MarSold;
13
14 // Calculate the total revenue for the quarter
15 quarterRevenue = calculateRevenueForQuarter(quarterSold);
16
17 saveFirstQuarterRevenue(quarterRevenue);
18
19 return 0;
20 }

Figure 5.12. A simple integer overfow example collected from CWE database. The summation
of three short int numbers can be more than the value of the maximum short int number, which
will introduce integer overfow vulnerability.

5.D Appendix: Simple CWE examples

Figure 5.12 shows a simple integer overfow vulnerability example. The CodeLLAMA model

could detect this vulnerability. The response of the CodeLLAMA model is shown in Figure 5.13.

The performances of all models on these simple examples are shown in Table 5.6

Example response

No, the function does not contain any of the following vulnerability types:
* CWE-190: Integer Overfow
* CWE-476: Null Pointer Dereference
* CWE-125: Out-of-bound Read
* CWE-787: Out-of-bound Write
* CWE-416: Use After Free

Figure 5.13. Code LLAMA’s response to the simple example in Figure 5.12.

156

Table 5.6. The performance of the studied models on simple CWE examples.

Model Performance

GPT-4 65.78
Gemini 1.0 Pro 50.87
GPT-3.5 56.14
Mixtral-MoE 61.40
Code LLAMA 61.40
LLAMA 2 46.49
WizardCoder 51.75
DeepSeek-Coder 66.67
StarChat2 55.26
StarCoder2 50.87
StarChat 50.00
StarCoder 41.52
MagiCoder 62.28
Mistral 57.01

5.E Appendix: Error analysis methodology

5.E.1 Inter-rater agreement

We frst analyzed 50 examples to create detailed error categories for each reasoning step. All

three raters independently identifed errors in the LLM responses, refning the protocol after

1processing 1⁄3, ⁄2, and all of the data. We added new error categories when needed, and merged

similar categories after analysis concluded. We measured inter-rater agreement using Fleiss’ kappa

(κ) [15], achieving 0.78 with 86% agreement. We resolved disagreements by majority vote,

followed by discussion for the fnal categorization. After the categories were set in Section 5.3, we

used one rater to analyze the responses reported in Sections 5.3.1 to 5.3.3.

5.E.2 Error analysis UI

Figure 5.14 is a screenshot of the user interface (UI) used by the raters for error analysis. The

interface features a display of the source code (center), the model’s response and explanation

(bottom left), and metadata about the vulnerability (top left). Additionally, it provides a

157

Figure 5.14. Error analysis user interface.

confgurable set of checkboxes to select one or more error categories, along with a section for

free-form text notes (bottom right). We believe that this tool could be valuable for future

large-scale manual analyses of LLM responses, which is why we have included it in our data

package.

158

5.E.3 Error categories

Table 5.7 shows the defnitions for error categories, which we developed in our manual

analysis.

R
e
a
so

n
in
g

 S
te
p

C
a
te
g
o
ry

D
e
sc
ri
p
ti
o
n

(1
,2
)
L
o
ca
li
zi
n
g
an
d

 u
n
d
er
st
an
d
-
M
is
u
n
d
er
st
o
o
d

 B
ou
n
d
s/
N
U
L
L

 c
h
ec
k

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
a

in
g
st
at
em
en
ts

 r
el
at
ed

 t
o
v
u
ln
er
-

b
ou
n
d
s
ch
ec
k

 o
r
n
u
ll

 c
h
ec
k
,
su
ch

 a
s
”i
f
(p
tr
)
*p
tr
”
or

ab
il
it
y

”i
f
(i

 ¡
 l
en
)
b
u
f[
i]
”?

M
is
u
n
d
er
st
o
o
d

 s
tr
in
g
op
er
at
io
n

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
al
lo
-

ca
ti
on
,
co
p
y,

 r
ea
d
in
g,

 o
r
w
ri
ti
n
g
of

 s
tr
in
gs
?

M
is
u
n
d
er
st
o
o
d

 a
ri
th
m
et
ic

 o
p
er
at
io
n

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
an

ar
it
h
m
et
ic

 o
p
er
at
io
n
,
su
ch

 a
s
+
,
-,

 /
,
*?

M
is
u
n
d
er
st
o
o
d

 p
oi
n
te
r
op
er
at
io
n

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
a

st
at
em
en
t
in
vo
lv
in
g
a
p
oi
n
te
r
d
er
ef
er
en
ce

 o
p
er
at
io
n
?

M
is
u
n
d
er
st
o
o
d

 a
ll
o
c/
fr
ee

 o
p
er
at
io
n

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
a

m
em
or
y

 a
ll
o
ca
ti
on

 s
u
ch

 a
s
m
al
lo
c
or

 n
ew
?

M
is
u
n
d
er
st
o
o
d

 i
n
d
ex

 o
p
er
at
io
n

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
a

st
at
em
en
t
in
vo
lv
in
g
an

 a
rr
ay

 i
n
d
ex

 o
p
er
at
io
n
?

M
is
u
n
d
er
st
o
o
d

 e
x
ec
u
ti
on

 o
rd
er

D
o
es

 t
h
e
m
o
d
el

 s
ta
te

 a
 f
al
se

 p
ro
p
os
it
io
n

 a
b
ou
t
a
co
n
-

d
it
io
n
al
, s
u
ch

 a
s
if

 o
r
sw
it
ch
, o
r
th
e
or
d
er

 o
f e
x
ec
u
ti
on

b
et
w
ee
n

 t
w
o
st
at
em
en
ts
?

Im
p
ro
p
er

 a
ss
u
m
p
ti
on

D
o
es

 t
h
e
m
o
d
el

 m
ak
e
an

 u
n
re
as
on
ab
le

 a
ss
u
m
p
ti
on

ab
ou
t
a
fu
n
ct
io
n
,
va
ri
ab
le
,
or

 p
ar
am
et
er

 i
n

 t
h
e
ex
-

am
p
le
?

M
is
u
n
d
er
st
o
o
d

 s
y
n
ta
x

D
o
es

th
e
m
o
d
el

m
is
in
te
rp
re
t
th
e
sy
n
ta
x

of

v
is
i-

b
le

 c
o
d
e,

 e
.g
.
in
te
rp
re
ti
n
g
th
e
d
ec
la
ra
ti
on

 i
n
t

 *
x

 =

N
U
L
L
;

 a
s
a
d
er
ef
er
en
ce

 o
f
x
?

L
og
ic
al

 r
ea
so
n
in
g

(3
)

F
a
u
lt
y

 i
m
p
li
ca
ti
on

D
o
es

 t
h
e
m
o
d
el

 m
ak
e
a
lo
gi
ca
l i
m
p
li
ca
ti
on

 w
h
er
e
th
e

co
n
cl
u
si
on

 d
o
es

 n
ot

 f
ol
lo
w

 f
ro
m

 t
h
e
p
re
m
is
e(
s)
?

In
co
n
si
st
en
t

D
o
es

 t
h
e
m
o
d
el

 m
ak
e
an
y

 s
ta
te
m
en
ts

 w
it
h
in

 i
ts

 r
e-

sp
on
se

 w
h
ic
h

 a
re

 c
on
tr
ad
ic
to
ry
?

C
ro
ss
-c
u
tt
in
g
er
ro
rs

H
al
lu
ci
n
a
ti
on

D
o
es

 t
h
e
m
o
d
el

 r
ea
so
n

 a
b
ou
t
co
d
e
th
at

 i
sn
’t

 t
h
er
e?

M
em
or
iz
at
io
n

D
o
es

 t
h
e
m
o
d
el

 r
ea
so
n

 a
b
ou
t
co
d
e
th
at

 is
 p
ot
en
ti
al
ly

m
em
or
iz
ed

 f
ro
m

 t
h
e
tr
ai
n
in
g
d
at
a,

 s
u
ch

 a
s
ta
lk
in
g

ab
ou
t
th
e
ca
ll
in
g
co
n
te
x
t?

R
ep
et
it
io
n

D
o
es

 t
h
e
m
o
d
el

 o
u
tp
u
t
re
p
ea
te
d

 s
en
te
n
ce
s
w
h
ic
h

d
on
’t

 m
ak
e
se
n
se

 i
n

 s
eq
u
en
ce
?

159

Table 5.7. Defnitions of Model Reasoning Errors.

160

CHAPTER 6. CLOSING THE GAP: A USER STUDY ON THE

REAL-WORLD USEFULNESS OF AI-POWERED VULNERABILITY

DETECTION & REPAIR IN THE IDE

Benjamin Steenhoek1* , Siva Sivaraman2 , Renata Saldívar Gonzalez3 , Yevhen Mohylevskyy4 ,

Roshanak Zilouchian Moghaddam5 , and Wei Le6

1,6 Department of Computer Science, Iowa State University, Ames, IA, 50011

2-5 Data & AI team, Microsoft, Redmond, WA, 98052

Modifed from a manuscript published in the 47th International Conference on Software

Engineering (ICSE 2025)

Abstract

Security vulnerabilities impose signifcant costs on users and organizations. Detecting and

addressing these vulnerabilities early is crucial to avoid exploits and reduce development costs.

Recent studies have shown that deep learning models can efectively detect security

vulnerabilities. Yet, little research explores how to adapt these models from benchmark tests to

practical applications, and whether they can be useful in practice.

This chapter presents the frst empirical study of a vulnerability detection and fx tool with

professional software developers on real projects that they own. We implemented DeepVulGuard,

an IDE-integrated tool based on state-of-the-art detection and fx models, and show that it has

promising performance on benchmarks of historic vulnerability data. DeepVulGuard scans code

for vulnerabilities (including identifying the vulnerability type and vulnerable region of code),

suggests fxes, provides natural-language explanations for alerts and fxes, leveraging chat

∗ Work primarily done during an internship at Microsoft.

161

interfaces. We recruited 17 professional software developers, observed their usage of the tool on

their code, and conducted interviews to assess the tool’s usefulness, speed, trust, relevance, and

workfow integration. We also gathered detailed qualitative feedback on users’ perceptions and

their desired features. Study participants scanned a total of 24 projects, 6.9k fles, and over 1.7

million lines of source code, and generated 170 alerts and 50 fx suggestions. We fnd that

although state-of-the-art AI-powered detection and fx tools show promise, they are not yet

practical for real-world use due to a high rate of false positives and non-applicable fxes. User

feedback reveals several actionable pain points, ranging from incomplete context to lack of

customization for the user’s codebase. Additionally, we explore how AI features, including

confdence scores, explanations, and chat interaction, can apply to vulnerability detection and

fxing. Based on these insights, we ofer practical recommendations for evaluating and deploying

AI detection and fx models. Our code and data are available at this link:

https://doi.org/10.6084/m9.figshare.26367139.

6.1 Introduction

Security vulnerabilities impact users’ safety, security, and privacy and cost organizations

millions of dollars per year [29, 24], with reports of breaches exposing millions of records

becoming commonplace [3]. Early detection of vulnerabilities during the development phase can

greatly reduce costs and mitigate potential impacts [7, 4, 23]. In recent years, deep learning (DL)

vulnerability detection models have emerged as a promising approach for scanning code during

software development [11, 46, 20]. These models can identify vulnerability patterns in code

snippets and ofer the advantage of analyzing code during editing [12] with less confguration than

traditional static analysis tools [21].

Despite promising benchmark performance [11, 46, 20], it remains unclear whether these

models are actually useful in real-world development settings. In the past, Major organizations

such as Microsoft [15], Google [42], Facebook [17], and Coverity [5] have reported a gap between

benchmarking success and practical application with static analyzers. Recently, Fu et al. [21]

https://doi.org/10.6084/m9.figshare.26367139

162

conducted a preliminary controlled study with 6 developers, showing that AI tool support

reduced the time to diagnose and fx a vulnerability from 10-15 minutes to 3-4 minutes and

motivating further user studies of AI detection and fx tools. However, their study used a single

bug from their dataset rather covering real-world code-bases and they only studied vulnerability

detection and fxing.

In our work, we recruited 17 professional developers from a major software company in a

real-world development setting with their own projects; beyond detection and fxing, we also built

and studied AI-powered explanation and chat interfaces, which have recently become prominent

in the integrated development environments (IDEs) [1]. Our study provides a deeper

understanding of the real-world usefulness and nuances of deploying these models.

To carry out our study, we developed DeepVulGuard, an extension integrated with Visual

Studio Code (VSCode) [34], a popular IDE with over 14 million active users. We used

state-of-the-art models, CodeBERT [19, 12] and the GPT-4 large language model (LLM) [41], for

detection and fx tasks. Participants scanned 24 projects, 6.9k fles, and over 1.7 million lines of

source code, generating 170 alerts and 50 fx suggestions. To the best of our knowledge, ours is the

frst study to evaluate a detection and fx tool with professional developers on their own projects.

We initially evaluated DeepVulGuard’s potential for deployment by testing its detection and

fx models on established vulnerability datasets. Our models achieved 80% precision, 32% recall,

and a 46% F1 score on SVEN [22] for vulnerability detection and fxed 13% of vulnerabilities on

the Vul4J [9] dataset. DeepVulGuard performs comparably or better than state-of-the-art

models [16, 52, 8] and meets the threshold for acceptable false positives [15]. These results

indicate that our models are promising for detecting and fxing security vulnerabilities and can

generate meaningful results for the user study.

Our results show that 59% of participants expressed interest in future use of DeepVulGuard,

although there are several issues that limit its usefulness. For example, one problem was an high

rate of false positives in practice, caused by incorrect vulnerability pattern recognition and lack of

context about code snippets (e.g., inter-procedural vulnerabilities). This highlights the need for

163

more precise pattern recognition and better integration of environment and program context.

Additionally, the requirement to trigger a manual scan signifcantly disrupted the users’ workfow;

developers prefer tools that run in the background and alert them whenever potential

vulnerabilities are detected. Regarding fxes, 75% of proposed security fxes were unsuitable to

apply “as-is” due to lack of customization and incorrect integration into the code. Although some

fxes were functionally correct, they were not tailored to the user’s codebase and could not be

applied without signifcant modifcations. An interactive chat method shows promise to allow

developers to guide the generation towards more applicable fxes. Our fndings ofer concrete

recommendations for improving these pain points found in these tools.

We make the following research contributions:

1. We developed DeepVulGuard a VSCode extension for detecting, explaining and fxing

vulnerabilities, incorporating insights from static analysis and AI tool research. Our tool

allows customization of backend models, and we provide its code in our data package to

support further user studies. DeepVulGuard uses a multi-task training approach for jointly

predicting vulnerability classifcation, localization, and bug type. We also introduced a new

vulnerability fltering method with LLMs which improved precision by over 20%.

2. We conducted a user study with 17 professional software engineers at a major software

company. Through interviews and surveys as they ran our tool on their own code, we

quantitatively assessed multiple dimensions of usefulness for detection and fx tools and

provided practical recommendations for improving deep learning-based vulnerability

detection and fx tools.

6.2 User Study Interface

To study whether deep learning-based vulnerability tools can be useful in practice, we built

DeepVulGuard, a Visual Studio Code extension that brings state-of-the-art detection + fx

techniques to an IDE interface. DeepVulGuard allows users to (1) scan source code with

CodeBERT and LLM models, (2) view the reported vulnerabilities and LLM-generated

164

Figure 6.1: An overview of DeepVulGuard’s user interface on an example program. (1) An editor
alert; (2) Problems menu entry; (3) The explanation of the alert; (4a) Quick fx interaction; (4b)
Ignore options; (4c) Fix trigger; (5) Suggested fx; (6) Explanation of the fx suggestion; (7) Accep-
t/Reject buttons.

explanations directly inside the editor, and (3) generate suggestions for mitigating the

vulnerability. We also implemented a telemetry module to collect user data, enabling longitudinal

studies of AI-based vulnerability detection tools. As our study is the frst of its kind in this area,

we believe our tool will be a benefcial contribution which facilitates future user studies of

vulnerability tools. We released the extension code in our data package. The code can be easily

adjusted to call alternative detection and fxing solutions to be studied with developers in a

real-world setting.

6.2.1 IDE Integration

Figure 6.1 shows an overview of DeepVulGuard’s user interface. Users begin by requesting to

scan a fle or directory. If any potential vulnerabilities arise, they are shown as highlights in the

editor (1) and actionable entries in the Problems window (2), and a natural-language explanation

of the vulnerability is shown in the chat panel (3). The user can use this information to assess the

vulnerability and decide if a fx is required. They can also ask questions or make suggestions to

the chatbot by sending follow-up messages. By clicking on the quick fx lightbulb (4a), the user

165

can ignore the specifc alert or alert types (4b), or generate a quick fx (4c). On requesting the

quick fx, the suggested code modifcations will be presented in a dif view (5), showing the lines

to be removed and added. As well, an explanation of the fx is shown in the chat panel (6). The

user can modify the fx in the editor or suggest improvements with natural-language chat

messages if desired, then Accept it to apply it to their fles or Reject it to revert to the original

code (7). Users can enter chat messages (8), e.g. asking for clarifcation, information, or inputs

which trigger the vulnerability, and our tool will generate a conversational response.

We drew inspiration for our tool’s design from several foundational research studies on static

analyzers and AI-assisted developer tools. Johnson et al. [27] showed that developers requested

static analysis tools to be available in the IDE, along with quick fxes, and the ability to modify

rule sets. Similarly, Christakis et al. [15] identifed bad warning messages, lack of suggested fxes,

and poor visualization as pain points. Smith et al. [45] presented design guidelines, such as

presenting alerts in actionable locations, integrating with their workfow by tracking progress,

batch processing, allowing code editing during scans, and scalability of the interface. We

incorporated all of these features into DeepVulGuard.

A recent study on AI-powered code completion Wang et al. [50] found that users in focus

groups valued the ability to view a measure of the model’s confdence. To study this in a practical

implementation, we integrated confdence scores into our tool’s alerts, shown in Figure 6.1 (2). Fu

et al. [21] conducted a survey study and found that most participants valued localizations, CWE

type prediction, and quick fxes, so we integrated these features into our tool and evaluate them

in our study, shown in Figure 6.1 (1, 2, and 4a).

6.2.2 Model Architecture & Training

Our tool can be easily confgured to leverage a wide variety of deep learning models or static

analyzers. Figure 6.2 shows the workfow of the current design; specifcally, we implemented the

following techniques (please refer to our data package [2] for the implementation details, including

our model training procedure, dataset statistics, and hyper-parameters).

166

Figure 6.2: An overview of DeepVulGuard’s detection workfow. (1) Binary classifcation into
vulnerable/not-vulnerable; (2) Localization; (3) Multi-class classifcation into one of 27 vulnera-
bility types; (4) Alert and explanation shown to the user.

Fine-tuning CodeBERT for multi-task vulnerability detection: CodeBERT [19] and similar

models consistently perform well on various vulnerability datasets [20, 21, 46] with relatively low

latency which is suitable for detection in the editor [12]. We fne-tuned CodeBERT using

multi-task learning to (1) predict whether a code snippet contains a vulnerability, (2) localize the

tokens causing it, and (3) identify the vulnerability type. We trained on a dataset of over 1.3

million alerts labeled by CodeQL in GitHub projects following Chan et al. [12]’s methodology,

focusing on 27 vulnerability types related to Web security, e.g. Path Injection, SQL Injection,

Hard-coded Credentials, Unvalidated URL Redirect, Cross-Site Scripting (details in data

package). We generate alerts in the extension based on the predicted vulnerability type,

confdence score, and localization.

'''

You are a vulnerability detector. Only respond with "Yes" or "No" and an explanation. Does the

,→ following code snippet contain a SQL Injection vulnerability at line marked by ALERT?

'''

Figure 6.3: DeepVulGuard’s LLM flter prompt.

167

Filtering and explaining alerts with GPT-4: To further flter the false positives produced by

fne-tuned CodeBERT, we used GPT-4 [41] to flter the alerts and generate explanations. We

annotated the code snippet with a comment describing the alert type at the localized line, e.g.,

for SQL injection: // ALERT: This SQL query depends on a user-provided value (see our

data package for all types of annotations). Then we instructed GPT-4 using the prompt shown in

Figure 6.3. If the answer is Yes, the alert and explanation are shown to the user; otherwise, the

alert is not shown ((4) in Figure 6.2).

'''

A static analyzer has identified a {rule_id} security vulnerability in the {language} method

,→ below:

``` 

{method} 

``` 

The SARIF result message is as follows: {message}

{description}

Write a fixed version of the method above and wrap it in triple backticks, then explain why your

,→ version addresses the problem.

'''

Figure 6.4: DeepVulGuard’s fx model prompt.

Prompting GPT-4 for repair and explanation: We used GPT-4 with custom prompts to generate

and explain code fxes. The prompt, shown in Figure 6.4, includes the source code, vulnerability

report, and an instruction to provide a fxed version of the code and an explanation. We displayed

the explanation in the chat panel and inserted the code suggestion to show a dif with the original

content, shown in Figure 6.1 on the right.

168

Figure 6.5: Performance of DeepVulGuard’s detection component on SVEN.

6.2.3 Evaluating Detection and Fix Capabilities

To ensure that DeepVulGuard is both efective and representative of the state-of-the-art, we

tested its performance on benchmarks that resemble the real-world deployment scenario as closely

as possible. To evaluate DeepVulGuard’s detection capability, we used: the SVEN dataset [22]

with 380 high-quality vulnerability examples from open-source Python projects (93% label

accuracy [16])). Our detection model supports all the security vulnerability types present in the

dataset. We used a strict defnition for true positives: the predicted bug type must match, and

localized line number must match the lines changed in the patch. Figure 6.5 shows on the SVEN

dataset our model achieved 80% Precision and 32% Recall, with an F1 score of 46%.

Overall, our results are better than or on par with the prediction quality of SOTA models on

vulnerability detection. For example, most recently, Ding et al. [16] reported that SOTA models,

including CodeBERT, attained 18-21 F1 score on their dataset of C/C++ vulnerabilities. We

cannot directly compare our model with other SOTA models on our dataset as most are trained

on C/C++-specifc memory or pointer bugs [32, 20, 46, 11, 47, 16].

Christakis et al. [15] found that most developers tolerate up to a 20% false-positive rate; with

the LLM flter, our model meets this threshold on the SVEN dataset, with 80% precision. These

results highlight DeepVulGuard’s practical efectiveness and potential for deployment in

real-world applications.

169

To evaluate DeepVulGuard’s fx component, we used the Vul4J [9] dataset, which includes

executable tests to reproduce security vulnerabilities. We assessed the test results, supplemented

by manual validation, to verify that the suggested fxes mitigated issues without breaking other

functionality. Among the 24 single-hunk bugs with vulnerability types that our tool handles, our

model produced 3 (13%) correct fxes and 2 (8%) partial fxes, which resolved the issue but broke

1-3 other tests; 10 (42%) fxes had errors inserting the generated code into the fle and 9 (37%)

fxes could not compile. For efciency needed for using in IDE, we chose to not run LLM multiple

times. These results show that our model performs similarly to SOTA evolution-based automated

program repair (APR) tools [8] (13% correct fxes, taking up to 7 minutes in the 75th percentile,

intersection n = 24) and LLMs such as Codex [52] (15.4% plausible fxes on the frst try,

intersection n = 13).

We conducted the above performance probe to confrm that DeepVulGuard can be used to

conduct a meaningful study; that it is practical for handling real-world vulnerabilities and ofers

performance comparable to state-of-the-art techniques. We did not aim for a comprehensive

controlled evaluation to claim that DeepVulGuard outperforms the current state of the art.

6.3 User Study Design

We developed three research questions to guide our study.

RQ1: Is DeepVulGuard useful in practice?

RQ2: Which aspects of vulnerability detection + fx tools are most useful?

RQ3: What features do developers want from vulnerability detection + fx tools?

6.3.1 Study Design

We carried out an exploratory case study [18] with a group of 17 professional developers from

a major software company. We asked users to run DeepVulGuard on projects they were actively

developing or were familiar with, and answer survey questions about their perception of the tool.

To the best of our knowledge, our tool is the frst vulnerability detection + fx tool to be studied

170

Figure 6.6: Participant demographics and tool adoption. Where applicable, participants listed mul-
tiple items for the project domain, project language, and security tooling.

in a real-world setting with professional developers on projects which they own. This study

enabled us to explore many open questions such as the role of explanations, the developers’

tolerance for false-positives or delayed results, and what constitutes an efective fx in a secure

development context. We chose an exploratory study over, e.g. a controlled study, because it

elicits rich feedback from developers in a real-world setting. Our approach takes advantage of the

developers’ deep understanding of their own projects, leading to a more accurate assessment of

potential vulnerabilities and providing more valuable insights.

Recruitment: We carried out our study with a group of 17 professional developers recruited from

a major software development company. We recruited developers primarily using snowball

sampling, with a 53% participation rate. In total, participants scanned a total of 24 projects, 6.9k

fles, and over 1.7 million lines of source code, and generated 170 alerts and 50 fx suggestions.

Figure 6.6 shows the participants’ demographic information (with the exception of one

participant who declined the demographic survey), indicating that we studied a diverse set of

developers from various levels of experience and backgrounds. Participants had a median of 11

years of experience; participants worked on both front-end and back-end domains and represented

171

a diverse set of applications such as web applications, back-end services, IDE extensions. Most

projects were written in C# or TypeScript. Most participants considered themselves

security-conscious (median 4/5), and all had some form of a static analysis tool running in

continuous integration or periodically, though more than half of the projects used tools for

reasons of organizational compliance rather than individual initiative; most participants did not

use security tools in the IDE. The majority of participants used AI-powered tools occasionally (a

few times a week) or every day, such as code completion tools or chatbots, though three

participants used AI tools rarely or not at all, stating that they did not fnd them useful.

Interviews: Each participant ran our tool on a code-base associated with a production application

which they actively develop and shared their perspective guided by both structured and free-form

questions. We frst asked the participants to run our tool on a simple web server containing a

known vulnerability to introduce the features of our tool: detection, fx, and chat. Then, we

directed the participants to run the tool on security-critical areas of their application, such as web

interfaces, API endpoints, database code, and fle processing code.

We ran the study as a think-aloud empirical study [43, 30], meaning we asked developers to

verbalized their thoughts while running the tool and processing the results. When participants

explicitly asked questions, we provided help and answered questions to facilitate a smooth

interview process and clarify the participant’s statements, e.g., about the meaning of diferent UI

elements, bug type descriptions, or behavior of the tool, but we refrained from explaining the

results of the tool or interpreting the meaning of its outputs to avoid biasing the study. Each

interview lasted approximately 50 minutes, consisting of a 10-minute setup and demographic

survey, average 28 minutes usage of the tool and 12 minutes post-usage survey and discussion. We

interviewed all subjects over video calls, and with their full consent, recorded feld notes and

demographic, audio, screen-capture, survey, and tool usage data.

After they used the tool, we asked participants about various aspects of the tool: (1) their

overall perception of the usefulness of the detection alerts and suggested fxes and their

satisfaction with the speed (Q1-Q3, reported on a Likert scale from 1 to 5 from “not

172

useful/satisfed at all” (1) to “very useful/satisfed” (5)); (2) whether the tool fts their workfow,

whether they trust in the tool, whether the reported alert types were relevant, and whether they

would keep using the tool (Q4-Q7, reported as Yes/No). We also asked the participants what

features they found especially useful and what features they would like to see in the tool. We

asked the questions verbally during the interview, immediately after trying the tool, in order to

collect free-form feedback on each question and ensure that the participant could recollect their

experiences with the tool.

We designed the initial set of interview questions, guided by our research questions and

informed/inspired by fndings and open questions from previous studies of static analysis and AI

tools [27, 15, 21, 50, 45, 6, 35]. Three authors tried the tool and all authors reviewed the survey

questions, and we gathered feedback from outside researchers within our organization to improve

the design of the planned questions.

Data Analysis Process: We analyzed the data quantitatively and qualitatively, reporting the

results in Section 6.4.

To quantify users’ perceptions of our tool, we tallied the responses to the post-interview

survey, shown in Figure 6.7. Regarding questions Q1-Q3, we report the mean and distribution of

Likert scores, and regarding Q4-Q7, we report the proportion of “Yes” responses. We also

categorized each alert or fx that the participants examined during the interviews into “Useful” or

one of 8 problem categories, based on the participant’s explanation. We discuss the results in

Section 6.4.1.

We conducted a grounded-theory analysis to analyze the study participants’ rich free-form

feedback [13], following the literature [27, 15, 26]. Grounded-theory analysis is a method used to

analyze data by identifying recurring concepts, grouping these concepts into salient categories,

and developing themes that provide an overall understanding of participants’ perceptions of the

tool. These concepts are derived from participants’ quotations, refecting their thoughts while

using the tool and their responses to survey questions. All the resulting concepts and groups are

referred to as a codebook.

173

We analyzed over 11 hours of usage and survey transcripts and identifed a total of 161 codes

in 12 distinct groups. Relevant codes are shown in Figure 6.8 and Figure 6.9. To create the initial

codebook, the frst and second authors independently analyzed two randomly selected interviews

and generated lists of recurring concepts. They then met to create a unifed list of concepts,

create higher-level groups, and develop overall themes. Each author independently analyzed half

of the remaining interviews, periodically syncing and jointly analyzing the same interviews to

update the codebook and compare notes. Both raters agreed on all the classifcations for alert

responses. This was an iterative process [13], where we created the initial codebook after

conducting the frst 6 interviews and refactored/added groupings periodically as we conducted the

remaining 11 interviews. We present our qualitative analysis in Section 6.4.2.

During the interviews, study participants suggested several features they felt would be useful,

which provide useful recommendations for tool builders and directions for further research; we

identify these as concepts in our grounded-theory analysis and discuss these feature requests in

Section 6.4.3. The anonymized demographic data, interview and survey script, and codebook are

in our data package [2].

6.4 User Study results

6.4.1 RQ1: Is DeepVulGuard useful in practice?

Detection: Figure 6.7 reports the results of our post-interview survey. On average, participants

rated DeepVulGuard’s alerts at 2.5 out of 5 for usefulness (Q1), with 2 participants giving it a

rating of 4.5 or above and 3 participants giving it a rating of 1. Only 53% of participants felt that

they trusted the tool’s warnings about vulnerability alerts (Q5). The biggest barrier to

usefulness and trust in the tool’s alerts was the amount of false positives, with 30% of

users explicitly reporting losing trust in the tool after frequently encountering false positives. The

false positive rate in real-world settings was higher than in our SVEN dataset measurements

(Section 6.2.3). We attribute this diference to varying languages and vulnerability types: SVEN

contains Python code, whereas most participants worked on Typescript or C# which comprise

174

Figure 6.7: Summary of participants’ overall perceptions of DeepVulGuard, from our post-interview
survey.

only 6% of our training data. Additionally, SVEN examples are intra-procedural, lacking

information about the calling context and runtime environment, which may widen the gap

between benchmark data and real-world testing.

76% of participants felt that the vulnerability types detected by the tool were relevant (Q6),

with some participants expressing strong approval, for example: “Defnitely all of the all the

categories of the vulnerabilities that were found here were good. They’re all ones that hit these

kinds of code all the time.”.

Fix suggestions: On average, participants rated DeepVulGuard’s fx suggestions at 2 out of 5 for

usefulness (Q1). 2 participants gave it a rating of 4, and 7 participants gave it a rating of 1. For

fxes, one of the most common issues was that the fx was not customized to the

developer’s codebase, for example, creating a function to sanitize user inputs when the

developer wants to reuse their existing sanitization library; this often prevented the users from

directly applying the fx, requiring an overhaul to produce a fx with their intended approach.

175

This highlights a limitation of common exact match or execution-based metrics for evaluating

AI-based fxes, as these metrics do not capture the practical nuances of generating fxes for

real-world codebases.

Speed: The average response time for the tool was 3.9 seconds per fle. More than half of the

participants were “very satisfed” with the speed of the tool, rating it at 5/5 (Q3). When asked

about the tool’s speed, one participant stated “Totally satisfed. I can wait for this kind of stuf”

(referring to security alerts + fxes).

Workfow integration: More than half (65%) of participants felt that the tool in its current state

would not ft into their workfow (Q4). 14 out of 17 users expressed that the tool would be

more useful if it was running in the background and scanning their code while they

were editing or ran along with their build or commit commands; manually triggering

the scan was a barrier to usage, since it required a stopping point in development.

Summary: Although not fully satisfactory, the tool shows promise — 59% of participants

expressed that they would keep using the extension.

Figure 6.8 reports the participants’ responses to the 51 alerts and 24 fxes for which they

provided direct feedback during the interviews, based on the categories assigned in our

grounded-theory analysis. Here we display alerts from the combined CodeBERT + LLM model,

excluding four participants who used the CodeBERT model. Participants considered 18% of

alerts, and 25% of fxes, to be useful and without signifcant problems. The primary causes of

false positive alerts were missing context (totaling 51% of alerts) and incorrect pattern

recognition (31%). Missing context involved misidentifying variables as user-controlled or

overlooking vulnerabilities handled by the calling context or runtime environment. Incorrect

pattern recognition involved misidentifying harmless patterns as vulnerabilities, such as constant

strings mistaken for hard-coded credentials. We hypothesize that incorporating references to the

calling context and runtime environment [31], along with in-context examples [53] of commonly

misidentifed patterns, into the LLM flter prompt shown in Figure 6.3 may help to address these

limitations.

176

Figure 6.8: Participant responses to LLM-fltered alerts and LLM-generated fxes while using Deep-
VulGuard.

21% of fxes were rejected because they were not customized to the user’s codebase – they did

not incorporate existing functions in the project (e.g. sanitization) or didn’t comply with project

style and linting rules, and thus could not be directly applied. Additionally, 21% did not address

the underlying vulnerability, another 17% incorrectly inserted code generated by the LLM,

resulting in syntax or indenting issues, and 8% of fxes mitigated the issue but broke existing

functionality. 8% were placeholders containing instructional comments rather than functional

fxes.

6.4.2 RQ2: Which aspects of vulnerability detection + fx tools are most useful?

Figure 6.9 summarizes the participants’ comments about diferent components of detection

and fx tool components, based on the participants’ think-aloud feedback while using

DeepVulGuard, which we categorized in our grounded-theory analysis. Based on their responses,

177

Figure 6.9: Participants’ in-use feedback on the aspects of DeepVulGuard. The aspects of the tool
are organized into trees, where the leaf nodes are categories of comments from participants and the
intermediate nodes are groupings of each category. Percentages show what portion of the comments
on their respective aspects that each category constitutes; positive comments are green and negative
comments are red.

fx suggestions and confdence scores seem to be the most useful aspects of the tool, with 44% and

50% positive feedback respectively.

Fix suggestions: Fixes that have the correct initial approach allow the user to apply them with

minimal changes. Out of the comments on fxes, 21% noted that the fxes could be applicable,

with 7% of these noting that the fxes required minor changes such as changing variable names or

error messages.

Fixes gave developers insight on vulnerabilities and best security practices.

Beyond mitigating the vulnerability, 14% of comments noted that seeing the dif between ‘bad’

and ‘good’ code helped them understand the root cause of the issue. Fixes can also provide

guidance on secure best practices when developers are working on unfamiliar code (7%). One

developer said, “If I knew I was starting in an area I wasn’t very familiar on the most secure

practices, it would be very helpful.”

178

However, some fxes lacked context (39%) or were more complex than the user’s ideal solution

(9%). Many security issues require multi-site edits, either when changing the semantics of a

shared function or when encoding or decoding data; our tool is currently limited to fxing one

function at a time, so the fx can lack context, which can result in breaking functionality,

expressed by one participant as follows: “This is how [the fx] should be defned, but then I would

have to go fnd all the places where it’s used and fx them all. And that might be a lot of places.”

Incorporating additional context, such as the list of functions which call the function to be

changed, could help provide more, contextualized fxes.

Placeholder fx suggestions were less preferred for users who were expecting

functional fxes. LLMs occasionally generate placeholder code by default, including containing

instructional comments rather than functional fxes. Some users did not fnd these useful,

constituting 9% of comments on fxes, such as “Well, that’s not helpful” and “It’s not really

adding anything to the output”. Since placeholder fxes can negatively impact users who prefer

functional fxes, it’s important to set expectations; a potential improvement could be to

re-generate the fx when placeholders are initially generated, and if a functional fx cannot be

provided, the placeholder fx should be accompanied by an explanatory message.

Chat interactions added value by allowing developers to iterate on fxes. In one

case where the fx used the wrong approach at frst, the developer iterated on the fx by frst

suggesting a diferent approach and then specifying their style guidelines, and arrived at a fx

which they would apply without having to write the code themselves, saying afterwards, “I like

that this is conversational and I could do a few more rounds of interaction to understand what

could be alternative solutions or better ways to approach this issue besides the initial suggestion”.

Before the chat feature was implemented, 50% of participants expressed the desire to ask the

chatbot for more information about alerts or to suggest modifcations to fxes. Recent research

supports the potential usefulness of chat interactions. Nam et al. [35] found that developers

completed more coding tasks within a given time when using a chatbot for code explanations

compared to using a search engine.

179

Confdence score: Users overwhelmingly used the confdence score to rank issues by

importance. This interaction constituted 44% of user feedback on this feature; an additional 6%

noted that the confdence score was helpful for understanding the model’s prediction. The

confdence score can be useful to rank issues, but should be displayed to the user with full

understanding of its meaning; 39% of feedback indicated that participants were unclear about the

meaning of the score. We hypothesize that integrating the severity score [39] with the model

confdence score will make it more useful for prioritizing vulnerabilities. Finally, a high-confdence

result which is a false-positive can degrade the trust in the tool, as seen in 11% of feedback;

therefore, expectations should be managed.

Vulnerability Explanations: Explaining the vulnerability and security best practices can be useful

for providing comprehensive understanding of a vulnerability; 35% of feedback was positive,

indicating that the explanations were understandable and helpful. One developer compared with

existing static analysis tools: “Normally with a static analysis tool, if I get an error that I’m a

little unsure on, I would have to go out to a website of track down [an explanation], so providing

me a dif and some text here explained it a bit.”

With explanations, brevity and adding visual annotations are important. 42% of

feedback mentioned that the alert descriptions were too verbose; 11% mentioned that the verbiage

was too broad to be useful. To quote one developer, “If I see the code, it says sanitized input then

OK, so I need to sanitize it... I would be more comfortable looking at the fx to know what the

issue it is detecting, than read the verbose text.” Later they stated, “I usually read one or two

lines and then I stopped there. If it is too verbose, I probably don’t pay too much attention.”.

Another developer noted, “Rather than giving me a wall of text, it would be great if it gave me bad

and good examples.” One suggestion from this participant is to visually annotate the explanation

by presenting labels with short, recognizable names, such as Path Injection, and allow the user to

read the full explanation if they are interested.

Users expect the tool’s outputs to be consistent, which introduces challenges

when integrating LLM explanations and chat. 11% of feedback on explanations noted

180

inconsistencies between the explanation and subsequent fxes. For example, one user noted that

an alert’s explanation specifed not to use an insecure hashing function btoa, while the suggested

fx used this function. While this specifc issue could be solved by simply including the

LLM-generated explanation in the fx prompt, the general issue is important for tool builders to

be aware of.

Localization: Users preferred highlights on a complete line or variable/string/function

call. DeepVulGuard highlights the tokens which were localized by the model, which may not

necessarily align to semantic boundaries. 21% of participant feedback noted that localizations was

helpful, especially the ability to zoom to a vulnerability’ location. However, 58% of feedback

noted that the localization seemed incomplete because it only highlighted part of the structure it

was referencing. This behavior is by-design since the underlying model was specifcally trained to

only fag parts of the code that contributed to the vulnerability. However, this was one reason

that users lost trust in our tool; to quote one user, “The fact that the squiggle starts part way

through a word made me wonder – Oh, is it just on the wrong line, or maybe got some wires

crossed somewhere?”. Our model detects vulnerable code patterns at the fault location. In 21%

of feedback, users noted that they would prefer to see an alert in a more actionable

location – the root cause, or source for input validation issues, rather than at the

fault location; one user stated, “Preferably, I’d actually do that check way before this, either

where we download or where we extract, and that way we know that when we get here, this path is

already sanitized.”.

6.4.3 RQ3: What features do developers want from vulnerability detection + fx

tools?

Figure 6.10 displays a word cloud of feature suggestions from the study, identifed through our

grounded-theory analysis. We implemented basic versions of some highly requested features from

early interviews, specifcally alert suppression and basic chat interaction. We measured the

frequency of these requests from the participants who lacked these features.

181

Figure 6.10: The relative frequency of features suggested by the study participants.

Chat interaction was a frequently requested feature. Before implementing the chat

feature, 3 out of 6 participants wanted a chat interface to better understand alerts, view examples

of inputs that triggered them, and refne suggested fxes. Users who had chat available found it

useful; for example, one user asked for alternative suggestions to address an alert and expressed,

“Yeah, these are good ideas. This would seed some ideas for me”.

Starting the scan manually was a major disruption to developers’ workfow. 12 out

of 17 participants expressed that they would prefer if the tool scanned their code in the

background and reported problems while they were editing, and 3 participants said it would be

useful to trigger scans through a build or commit hook. One developer explained as follows:

“From a workfow perspective, I don’t typically reach a point where I say, ‘Oh, I’m just gonna stop

now and go check for security issues’.”

Before we implemented the suppression feature, 5 out of 6 participants wanted the ability to

suppress irrelevant alerts. One user specifcally mentioned that the tool’s outputs would be more

manageable if they could flter out alerts identifed as false positives or those frequently incorrect

or irrelevant to their use case. Participants suggested several other enhancements, such as options

for long-running overnight scans, click-to-scan UI interactions, the ability to scan entire directories

or projects and their dependencies, and team-shared confgurations sensitivity and rulesets.

182

6.5 Discussions

Based on our study, we fnd that current SOTA AI vulnerability detection and fx

tools are not yet satisfactory, but developers remain eager to continue using them.

This motivates us to continue researching and improving deep learning based methods and tools

of vulnerability detection and fx. We have highlighted key lessons from our study in bold in

Section 6.4. Here, we expand on several aspects of evaluating and deploying AI detection and fx

tools.

Our detection results show a substantially higher false positive rate in real-world deployment

compared to benchmark tests. Our study indicates it is impractical to (re)train a model for every

new code base due to the lack of labeled data. While current test data for AI models often come

from the same projects as the training data, in real-world scenarios, AI models are typically

applied to unseen projects. Additionally, current deep learning models handle one function at a

time [44], including DeepVulGuard; however, we see that many vulnerabilities in real-world code

are related to multiple functions and the runtime environment. Lacking such program and

environment context led to 51% of our tool’s alerts being identifed as false positives, as shown in

Figure 6.8. This result highlights the need for vulnerability benchmarks that incorporate more

realistic contextual information.

We also see that developers usually have specifc defnitions of “false positive” tailored to their

own codebase and deployment scenario. For instance, one user dismissed a warning about

sensitive data in an SSH key fle, citing feasibility issues despite acknowledging the vulnerability:

“This is a problem, but I don’t think there’s anything they can do about it... I mean, it is a

vulnerability – but if somebody can obtain access to the fle system, then they have access to all

kinds of password fles.” These user-specifc assumptions are difcult to incorporate into dataset

labels, emphasizing the need for holistic evaluations in realistic development scenarios. To

improve AI to predict likely feasible bugs, we may need to construct datasets using bugs with

reproducible exploits rather than potential (but possibly infeasible) vulnerabilities from CVEs.

183

We found that 21% of suggested fxes, though functionally-correct (i.e. they would pass unit

tests), were rejected because they were not customized to the user’s code-base. Current test

execution-based benchmarks [9, 28] do not capture this critical issue, highlighting the need for

more realistic evaluations that consider this aspect of fx suggestions.

Based on our study, we make several recommendations for deploying AI detection and fx

tools. First, when we deployed multiple models for detection, explanations, and fx, we need to

ensure that the outputs of these models are consistent, so we do not confuse users. Second,

LLM-generated explanations were often too verbose, suggesting a need to guide the LLM to

generate concise output and code examples, and to add visual annotations. Third, users prioritize

issues based on the displayed score, and this score should refect important aspects such as

severity, not just the confdence score.

6.6 Threats to Validity

Since our work is an empirical study, there may be limits to the generalizability of its

fndings [25].

External and internal validity: Our sample of 17 developers from a large company may not fully

represent all software developers’ opinions. Research estimates that 16 users are typically

sufcient to fully understand the challenges users face when using a tool [37]. This aligned with

our fndings, as the fnal two rounds of fve interviews each added only 5 and 2 new codes

respectively, indicating saturation. We recruited 11 more developers than a similar user study [21].

We included developers with experience ranging from 3 to over 30 years, covering projects in four

programming languages and including backend, frontend, and IDE extension code.

Following the literature’s recommendation to test iteratively with small user groups [36], we

frst tested with three participants, added key features to our tool like directory scan,

click-to-scan, and LLM flter, then tested with three more users before adding chat functionality

and alert suppression, and fnally included the remaining eleven participants. We account for the

developing feature set in Figure 6.10 and report only the LLM flter model responses in Figure 6.8.

184

We studied one set of models and 27 vulnerability types, which may limit generalization to

other models and vulnerability types. The focus of our study was on understanding the practical

usefulness of DL models in the IDE, so we chose to study one set of SOTA models (validated in

Section 6.2.3). Our tool supports the top 25 CWEs [49], plus the most frequent vulnerability types

CodeQL detected in our dataset. Future work could study more models and vulnerability types.

Construct validity: We used think-aloud interviews, discussed in Section 6.4.2, which may result

in users providing personal preferences rather than real system issues [40]. We addressed this by

using grounded-theory analysis to assess the users’ objective verdicts on root causes of alerts and

fxes (Figure 6.8) and quantify the support for each feedback category (Figure 6.9).

6.7 Related Work

Deep learning for vulnerability detection and fxing: Recent research has explored various DL

methods for vulnerability detection, including graph neural networks (GNNs) [11, 32, 46] and

transformer models [54, 20, 12, 21]. GNNs typically require complete source code to generate the

necessary abstract syntax trees (ASTs) and control fow graphs (CFGs), which limits their

efectiveness on incomplete code snippets. Our model is based on the state-of-the-art approach

from Chan et al. [12], which optimizes for both in-IDE latency and incomplete code snippets.

Compared to Fu et al. [21], which uses three separate models for localization, type, and severity

prediction, we fne-tune our model to predict the presence, location, and type of vulnerabilities in

a single forward pass, enhancing both simplicity and efciency. Additionally, we introduce a novel

LLM-based fltering technique that improved our model’s precision by 20%; this is compatible

with Fu et al. [21]’s approach. We also integrate SOTA LLMs for fx suggestions and show that

they perform on par with existing DL and APR tools in Section 6.2.3.

Benchmark studies of AI detection + fx models: Several empirical studies of DL models

corroborate our results in underscoring the need for user studies in realistic scenarios.

Chakraborthy et al. [11] found that DL models often face issues with data duplication and

unrealistic distributions of vulnerable classes. Chen et al. [14] showed that existing models have

185

difculty generalizing to unseen projects, but increasing the volume of training data can improve

their generalization. Steenhoek et al. [47] demonstrated that while some models perform well on

benchmarks matching their training data, they may struggle to generalize to new projects and

bug types. Recently, Ding et al. [16] indicated that current benchmarks may overestimate the

performance of deep learning models.

User studies of static analysis and AI tools: We developed our tool based on fndings and

recommendations from several user studies of traditional static analysis tools [27, 15, 45] (see

Section 6.2.1 for more details). A controlled study by Fu et al. [21] involving six software

practitioners demonstrated that DL detection & fx tools can be benefcial. They also surveyed 21

practitioners about the usefulness of features like localization, type and severity prediction, and

fx suggestions, which informed our tool’s design. To our knowledge, we are the frst to conduct a

study with professional developers on projects they own in a real-world deployment setting. There

has been work on investigating whether APR tools are useful in practice. Surveys showed that

most software practitioners prefer manual bug fxes over current APR tools due to unreliable and

slow patch production [33, 51, 38]. Campos et al. [10] deployed APR in the IDE in a controlled

study with 16 developers on a given project; APR increased developers’ speed but may impact

maintainability. We studied deep learning tools in a real-world development scenario where

professional developers run the tool on their own projects. The tool is fast and can improve fxes

via conversations with developers.

6.8 Conclusions

Recent research has introduced various deep learning vulnerability tools with promising

benchmark performance. However, there has been no extensive user study on their real-world

utility. To address this, we conducted a comprehensive user study with 17 professional developers,

analyzing 24 projects, 6.9k fles, and over 1.7 million lines of code, generating 170 alerts and 50 fx

suggestions. Our study revealed that while current models show promise, they are not yet

practical for everyday use due to challenges with (1) false positives caused by missing code

186

context and incorrect pattern recognition, and (2) fxes which were not customized to the

codebase. Based on user feedback, we make several recommendations for aligning model

evaluations with real-world development scenarios, and for deploying models in practice.

Through our user study, we identifed several areas for further research. One direction is to

support automatic code scanning and address questions such as when to scan and how much code

context to include. Another direction is to further develop AI powered chat interaction. Our

preliminary chatbot implementation showed useful for explaining vulnerabilities and generating

fxes. Future research should also resolve consistency issues among AI models’ outputs.

6.9 Bibliography

[1] Github copilot. https://github.com/features/copilot.

[2] The data package for our study. https://doi.org/10.6084/m9.figshare.26367139, 2024.

[3] List of data breaches - Wikipedia.

https://en.wikipedia.org/wiki/List_of_data_breaches, 2024.

[4] Baziuk, W. BNR/NORTEL: path to improve product quality, reliability and customer

satisfaction. In Proceedings of Sixth International Symposium on Software Reliability

Engineering. ISSRE’95 (1995), pp. 256–262.

[5] Bessey, A., Block, K., Chelf, B., Chou, A., Fulton, B., Hallem, S., Henri-Gros,

C., Kamsky, A., McPeak, S., and Engler, D. A few billion lines of code later: using

static analysis to fnd bugs in the real world. Communications of the ACM (2010).

[6] Bird, C., Ford, D., Zimmermann, T., Forsgren, N., Kalliamvakou, E.,

Lowdermilk, T., and Gazit, I. Taking Flight with Copilot: Early insights and

opportunities of AI-powered pair-programming tools. Queue (2023).

[7] Boehm, B. W. Software Engineering Economics. Springer Berlin Heidelberg, 2002.

https://github.com/features/copilot
https://doi.org/10.6084/m9.figshare.26367139
https://en.wikipedia.org/wiki/List_of_data_breaches

187

[8] Bui, Q.-C., Paramitha, R., Vu, D.-L., Massacci, F., and Scandariato, R.

APR4Vul: an empirical study of automatic program repair techniques on real-world java

vulnerabilities. Empirical Software Engineering .

[9] Bui, Q.-C., Scandariato, R., and Ferreyra, N. E. D. Vul4J: a dataset of reproducible

java vulnerabilities geared towards the study of program repair techniques. In Proceedings of

the 19th International Conference on Mining Software Repositories (New York, NY, USA,

2022), MSR ’22, Association for Computing Machinery, p. 464–468.

[10] Campos, D., Restivo, A., Sereno Ferreira, H., and Ramos, A. Automatic program

repair as semantic suggestions: An empirical study. In 14th IEEE Conference on Software

Testing, Verifcation and Validation (2021), ICST ’21, pp. 217–228.

[11] Chakraborty, S., Krishna, R., Ding, Y., and Ray, B. Deep learning based

vulnerability detection: Are we there yet? IEEE Transactions on Software Engineering 48,

09 (Sept. 2022), 3280–3296.

[12] Chan, A., Kharkar, A., Moghaddam, R. Z., Mohylevskyy, Y., Helyar, A.,

Kamal, E., Elkamhawy, M., and Sundaresan, N. Transformer-based vulnerability

detection in code at edittime: Zero-shot, few-shot, or fne-tuning?, 2023. arXiv: 2306.01754.

[13] Charmaz, K. Constructing grounded theory: A practical guide through qualitative analysis.

sage, 2006.

[14] Chen, Y., Ding, Z., Alowain, L., Chen, X., and Wagner, D. DiverseVul: A new

vulnerable source code dataset for deep learning based vulnerability detection. In Proceedings

of the 26th International Symposium on Research in Attacks, Intrusions and Defenses (New

York, NY, USA, 2023), RAID ’23, Association for Computing Machinery, p. 654–668.

188

[15] Christakis, M., and Bird, C. What developers want and need from program analysis: an

empirical study. In Proceedings of the 31st IEEE/ACM International Conference on

Automated Software Engineering (New York, NY, USA, 2016), ASE ’16, Association for

Computing Machinery, p. 332–343.

[16] Ding, Y., Fu, Y., Ibrahim, O., Sitawarin, C., Chen, X., Alomair, B.,

David Wagner, B. R., and Chen, Y. Vulnerability detection with code language models:

How far are we? In Proceedings of the 47th International Conference on Software

Engineering (2025), ICSE ’25.

[17] Distefano, D., Fähndrich, M., Logozzo, F., and O’Hearn, P. W. Scaling static

analyses at facebook. Communications of the ACM (2019).

[18] Easterbrook, S., Singer, J., Storey, M.-A., and Damian, D. Selecting Empirical

Methods for Software Engineering Research. Springer London, 2008.

[19] Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B.,

Liu, T., Jiang, D., and Zhou, M. CodeBERT: A pre-trained model for programming and

natural languages. In Findings of the Association for Computational Linguistics: EMNLP

2020 (Online, Nov. 2020), T. Cohn, Y. He, and Y. Liu, Eds., Association for Computational

Linguistics, pp. 1536–1547.

[20] Fu, M., and Tantithamthavorn, C. LineVul: A transformer-based line-level

vulnerability prediction. In Proceedings of the 19th International Conference on Mining

Software Repositories (New York, NY, USA, 2022), MSR ’22, Association for Computing

Machinery, p. 608–620.

[21] Fu, M., Tantithamthavorn, C., Le, T., Kume, Y., Nguyen, V., Phung, D., and

Grundy, J. AIBugHunter: A practical tool for predicting, classifying and repairing software

vulnerabilities. Empirical Software Engineering 29, 1 (Nov. 2023).

189

[22] He, J., and Vechev, M. Large language models for code: Security hardening and

adversarial testing. In Proceedings of the 2023 ACM SIGSAC Conference on Computer and

Communications Security (New York, NY, USA, 2023), CCS ’23, Association for Computing

Machinery, p. 1865–1879.

[23] Humphrey, W. S. A Discipline for Software Engineering. Addison-Wesley Longman

Publishing Co., Inc., 1995.

[24] IBM. Cost of a data breach 2024. https://www.ibm.com/reports/data-breach, 2024.

[25] Jedlitschka, A., Ciolkowski, M., and Pfahl, D. Reporting Experiments in Software

Engineering. Springer London, 2008.

[26] Johnson, B., Bird, C., Ford, D., Forsgren, N., and Zimmermann, T. Make your

tools sparkle with trust: The picse framework for trust in software tools. In Proceedings of

the 45th International Conference on Software Engineering: Software Engineering in Practice

(2023), ICSE-SEIP ’23, IEEE Press, p. 409–419.

[27] Johnson, B., Song, Y., Murphy-Hill, E., and Bowdidge, R. Why don’t software

developers use static analysis tools to fnd bugs? In 35th International Conference on

Software Engineering (2013), ICSE ’13, pp. 672–681.

[28] Just, R., Jalali, D., and Ernst, M. D. Defects4J: a database of existing faults to enable

controlled testing studies for java programs. In Proceedings of the 2014 International

Symposium on Software Testing and Analysis (New York, NY, USA, 2014), ISSTA ’14,

Association for Computing Machinery, p. 437–440.

[29] Keman, H., Wang, X., Wei, W., and Madnick, S. The Devastating Business Impacts of

a Cyber Breach.

https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach,

2023.

https://www.ibm.com/reports/data-breach
https://hbr.org/2023/05/the-devastating-business-impacts-of-a-cyber-breach

190

[30] Lewis, C. Using the “thinking-aloud” method in cognitive interface design. IBM TJ Watson

Research Center Yorktown Heights, NY, 1982.

[31] Lewis, P., Perez, E., Piktus, A., Petroni, F., Karpukhin, V., Goyal, N.,

K¨ aschel, T., Riedel, S., and Kiela, D.uttler, H., Lewis, M., Yih, W.-t., Rockt¨

Retrieval-augmented generation for knowledge-intensive nlp tasks. In Proceedings of the 34th

International Conference on Neural Information Processing Systems (Red Hook, NY, USA,

2020), NIPS ’20, Curran Associates Inc.

[32] Li, Y., Wang, S., and Nguyen, T. N. Vulnerability detection with fne-grained

interpretations. In Proceedings of the 29th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software Engineering (New

York, NY, USA, 2021), ESEC/FSE 2021, Association for Computing Machinery, pp. 292–303.

[33] Meem, F. N., Smith, J., and Johnson, B. Exploring experiences with automated

program repair in practice. In Proceedings of the IEEE/ACM 46th International Conference

on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for Computing

Machinery.

[34] Microsoft. Visual Studio Code - Code Editing. Redefned.

https://code.visualstudio.com/, 2024.

[35] Nam, D., Macvean, A., Hellendoorn, V., Vasilescu, B., and Myers, B. Using an

llm to help with code understanding. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

[36] Nielsen, J. Why You Only Need to Test with 5 Users.

https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/,

2000.

https://code.visualstudio.com/
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/

191

[37] Nielsen, J., and Landauer, T. K. A mathematical model of the fnding of usability

problems. In Proceedings of the INTERACT ’93 and CHI ’93 Conference on Human Factors

in Computing Systems (New York, NY, USA, 1993), CHI ’93, Association for Computing

Machinery, p. 206–213.

[38] Noller, Y., Shariffdeen, R., Gao, X., and Roychoudhury, A. Trust enhancement

issues in program repair. In Proceedings of the 44th International Conference on Software

Engineering (New York, NY, USA, 2022), ICSE ’22, Association for Computing Machinery,

p. 2228–2240.

[39] NVD. NVD - Vulnerability Metrics. https://nvd.nist.gov/vuln-metrics/cvss.

[40] O’Brien, L., and Wilson, S. Talking about thinking aloud: Perspectives from interactive

think-aloud practitioners. Journal of User Experience (2023).

[41] OpenAI. GPT-4 technical report, 2024. arXiv: 2303.08774.

[42] Sadowski, C., Aftandilian, E., Eagle, A., Miller-Cushon, L., and Jaspan, C.

Lessons from building static analysis tools at google. Communications of the ACM (CACM)

61 Issue 4 (2018), 58–66.

[43] Seaman, C. B. Qualitative Methods. Springer London, 2008.

[44] Sejfia, A., Das, S., Shafiq, S., and Medvidovic,´ N. Toward improved deep

learning-based vulnerability detection. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

[45] Smith, J., Do, L. N. Q., and Murphy-Hill, E. Why can’t Johnny fx vulnerabilities: a

usability evaluation of static analysis tools for security. In Proceedings of the Sixteenth

USENIX Conference on Usable Privacy and Security (USA, 2020), SOUPS’20, USENIX

Association.

https://nvd.nist.gov/vuln-metrics/cvss

192

[46] Steenhoek, B., Gao, H., and Le, W. Datafow analysis-inspired deep learning for

efcient vulnerability detection. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

[47] Steenhoek, B., Rahman, M. M., Jiles, R., and Le, W. An empirical study of deep

learning models for vulnerability detection. In Proceedings of the 45th International

Conference on Software Engineering (2023), ICSE ’23, IEEE Press, p. 2237–2248.

[48] The MITRE Corporation. CWE - Common Weakness Enumeration database.

https://cwe.mitre.org/.

[49] The MITRE Corporation. CWE - CWE Top 25 Most Dangerous Software Weaknesses.

https://cwe.mitre.org/top25/.

[50] Wang, R., Cheng, R., Ford, D., and Zimmermann, T. Investigating and Designing for

Trust in AI-powered Code Generation Tools, May 2023. arXiv:2305.11248.

[51] Winter, E., Bowes, D., Counsell, S., Hall, T., Haraldsson, S., Nowack, V., and

Woodward, J. How do developers really feel about bug fxing? directions for automatic

program repair. IEEE Transactions on Software Engineering (2023).

[52] Wu, Y., Jiang, N., Pham, H. V., Lutellier, T., Davis, J., Tan, L., Babkin, P., and

Shah, S. How efective are neural networks for fxing security vulnerabilities. In Proceedings

of the 32nd ACM SIGSOFT International Symposium on Software Testing and Analysis

(New York, NY, USA, 2023), ISSTA ’23, Association for Computing Machinery,

p. 1282–1294.

[53] Xie, S. M., and Min, S. How does in-context learning work? A framework for

understanding the diferences from traditional supervised learning.

https://ai.stanford.edu/blog/understanding-incontext/, 2022.

https://cwe.mitre.org/
https://cwe.mitre.org/top25/
https://ai.stanford.edu/blog/understanding-incontext/

193

[54] Yang, A. Z. H., Le Goues, C., Martins, R., and Hellendoorn, V. Large language

models for test-free fault localization. In Proceedings of the IEEE/ACM 46th International

Conference on Software Engineering (New York, NY, USA, 2024), ICSE ’24, Association for

Computing Machinery.

194

6.A Appendix: Detection model

This appendix lists the details of our detection model and training procedure.

6.A.1 Training procedure

We implemented our detection model by fne-tuning CodeBERT [19], following the procedure

and using the dataset introduced in Chan et al. [12]. We chose this model because it is suited to

Edit-Time vulnerability detection, localization, and bug-type prediction, while other

state-of-the-art models we considered [20, 46] are trained on and primarily intended for complete

code snippets without the ability to both localize lines and predict a specifc bug type. We

fne-tuned the CodeBERT model for multi-task prediction. For each given code snippet, it

predicts: (1) whether the snippet contains a vulnerability, (2) whether any specifc tokens in the

snippet contain a vulnerability, and (3) the type of the vulnerability. See Figure 2 in the paper for

an overview of our detection model approach. We replaced the fnal classifer layer (normally

performing binary classifcation) with a layer of size (d + k), where d is the number of tokens in

the context window (512 for CodeBERT) and k is the number of bug types in our training

dataset (27 in our case), followed by a softmax layer. During training, we labeled the tokens

indicated in the CodeQL alert with 1 when the code contained a vulnerability related to that

token and 0 otherwise, did likewise for the bug types, and trained the model to jointly predict

these 512 + 27 = 539 classes for each example. To train the model, we used a dataset of over 1.3

million alerts from CodeQL, collected using the same methodology as Chan et al. [12].

We trained the CodeBERT model on a dataset containing over 1 million code snippets in

seven languages (C/C++, C#, Go, Java, JavaScript/TypeScript, Python, and Ruby), including

bug types corresponding to 27 CodeQL rules marked as impactful in the CWE database [48],

including Path Injection, SQL injection, Cross-Site Scripting (XSS), URL Redirection,

Hard-coded Credentials, and Plain-Text Logging of Sensitive Data. We found that this multi-task

fne-tuning was efective for providing localization and bug type classifcation, as shown in Section

II-C in the paper.

195

6.A.2 Dataset statistics

Table 6.1: Proportion of alerts in each language.

Language Percentage

js
py
java
c
ts
go
cpp
html
cs
tsx
cc
jsx
rb
mjs
h
hpp
es6
xhtml

40.1%
30.3%
9.2%
5.4%
5.1%
4.8%
1.6%
1.1%
0.8%
0.5%
0.4%
0.3%
0.1%
0.1%
0.1%
0.0%
0.0%
0.0%

Type Percentage

path-injection 18.1%
sql-injection 16.8%
incomplete-sanitization 13.1%
unvalidated-url-redirection 7.7%
refected-xss 7.6%
stack-trace-exposure 7.2%
clear-text-logging 6.3%
hardcoded-credentials 6.0%
weak-cryptographic-algorithm 3.2%
insecure-randomness 2.1%
overly-permissive-fle 1.9%
command-line-injection 1.5%
clear-text-storage-sensitive-data 1.4%
incomplete-hostname-regexp 1.3%
ssrf 1.3%
fask-debug 1.3%
regex-injection 0.9%
insufcient-password-hash 0.9%
bind-socket-all-network-interfaces 0.6%
code-injection 0.6%
tarslip 0.1%
weak-crypto-key 0.1%
cleartext-storage-fle 0.1%

6.A.3 Full list of languages in the training dataset, by fle extension

• .js • .py • .h • .rb

• .ts • .cs • .hpp

• .jsx • .cpp • .java

• .tsx • .c • .go

196

6.A.4 Hyperparameters

• n epochs: 200

• batch size: 24

• learning rate: 2e-5

197

CHAPTER 7. GENERAL CONCLUSION

Now that deep learning models have demonstrated promising capabilities for vulnerability

detection, it has become essentially important to understand these models (especially their

limitations) and develop techniques to apply them to real-world code. This dissertation provides a

deep and comprehensive study of the state-of-the-art models, including diverse evaluation

scenarios and deployment in a real-world user study, and shows our successful eforts to improve

these models by integrating static and dynamic analysis.

7.1 Summary of Contributions

First, we performed comprehensive empirical studies of a wide range of deep learning models.

In Chapter 2, we evaluated fne-tuned transformers and graph neural networks, which were the

state-of-the-art at the time. Through this, we showed that these models have high variability in

their predictions; that training on a single type of vulnerability generally performed better than

multi-type training; that performance did not increase signifcantly by simply increasing the

dataset size; and that models tended to focus on textual code patterns apart from the root cause

of vulnerabilities. In Chapter 5, as large language models (LLMs) began to show new capabilities,

we evaluated LLMs using state-of-the-art prompting techniques. We found that LLMs could not

perform substantially better than random guessing and could not diferentiate buggy and fxed

versions of code; that they often made errors in understanding code, hallucinating, and logically

reasoning to a conclusion; and that they performed far worse than humans in localizing bugs. Our

fndings from these empirical studies continue to apply to new approaches for applying deep

learning models, as many of the problems we found are yet unsolved.

Based on the results of our empirical studies, we saw that models trained for textual pattern

matching were limited in their understanding of vulnerability semantics and failed to generalize to

198

unseen data. We developed two approaches to integrate program analysis into these models: static

analysis with DeepDFA (Chapter 3) and dynamic analysis with TRACED (Chapter 4). We found

that integrating static and dynamic analysis allowed these models to improve on the

state-of-the-art performance while improving other areas of efciency and generalization.

DeepDFA yielded better generalization, including generalization to unseen datasets, and greater

efciency in terms of training data and runtime resources, than text-based models. TRACED

demonstrated the ability to predict function execution better than statically pre-trained models,

and yielded greater performance on two downstream tasks: code clone detection and vulnerability

detection. Both of these works represent an initial step towards integrating program analysis with

deep learning, but more open questions remain about how to broadly and efectively utilize these

new techniques.

Finally, in Chapter 6, we ran a user study on an IDE-integrated instantiation of

state-of-the-art deep learning models, reporting several fndings which were unseen because they

were difcult to measure in ofine benchmark evaluations. We found that, when deployed in

practice, the models tend to generate a high rate of false positives and produce fxes which were

not immediately applicable to the codebase. We also surfaced several feature requests which were

highly desired by users, such as chat integration and automatic scanning. Our fndings motivate

investigation into how to mitigate the pain points expressed by developers and longitudinal

studies of how these tools are best used by developers.

7.2 Future Work

As future work from Chapter 3, we envision that DeepDFA can be extended to integrate more

datafow analyses [2] and abstract interpretation [1] techniques. As our work showed marked

improvement even when tightly scoped to reaching defnitions analysis with the Kildall method,

we believe that it only scratches the surface of possibilities of this technique.

Building on Chapter 4, we would like to scale up the integration of execution information.

TRACED was pre-trained on contest programs from Project CodeNet [3], but the next step will

199

be to pre-train on a larger dataset of execution traces from realistic programs, which contain

much more complexity and diversity than contest programs. We believe that this would extend its

applications to be more efective for real-world programs.

Chapter 5 showed that LLMs often experienced Code Understanding errors. We plan to

integrate static analysis to extract a reliable set of facts about the code under analysis, and

include these facts in the prompts given to the model; given that Logic errors also appeared

frequently, we also want to explore ways to make LLM reasoning more faithful, such as

self-consistency [4].

Finally, following up on Chapter 6, we plan to continue studying the deployment of deep

learning models in the IDE scenario, building on the DeepVulGuard prototype and initial user

study. User feedback motivated the addition of several specifc features, such as automatic

scanning, in-depth chat interaction, and false-positive mitigation.

7.3 Bibliography

[1] Cousot, P., and Cousot, R. Abstract interpretation: a unifed lattice model for static

analysis of programs by construction or approximation of fxpoints. In Proceedings of the 4th

ACM SIGACT-SIGPLAN symposium on Principles of programming languages (New York,

NY, USA, Jan 1977), POPL ’77, Association for Computing Machinery, pp. 238–252.

[2] Nielson, F., Nielson, H. R., and Hankin, C. Principles of program analysis. Springer,

2015.

[3] Puri, R., Kung, D., Janssen, G., Zhang, W., Domeniconi, G., Zolotov, V., Dolby,

J. T., Chen, J., Choudhury, M., Decker, L., Thost, V., Thost, V., Buratti, L.,

Pujar, S., Ramji, S., Finkler, U., Malaika, S., and Reiss, F. Codenet: A large-scale ai

for code dataset for learning a diversity of coding tasks. In Proceedings of the Neural

Information Processing Systems Track on Datasets and Benchmarks (2021), J. Vanschoren

and S. Yeung, Eds., vol. 1.

200

[4] Wang, X., Wei, J., Schuurmans, D., Le, Q. V., Chi, E. H., Narang, S., Chowdhery,

A., and Zhou, D. Self-consistency improves chain of thought reasoning in language models.

In The Eleventh International Conference on Learning Representations (2023).

	TABLE OF CONTENTS
	LIST OF TABLES
	=LIST OF TABLES
	LIST OF FIGURES
	=LIST OF FIGURES
	ACKNOWLEDGMENTS
	ABSTRACT
	1. GENERAL INTRODUCTION
	1.1 Contributions
	1.2 Outline
	1.3 Bibliography

	2. AN EMPIRICAL STUDY OF DEEP LEARNING MODELS FOR VULNERABILITY DETECTION
	2.1 Introduction
	2.2 A Survey of Models and their Reproduction
	2.3 Research Questions and Findings
	2.3.1 Capabilities of Deep Learning Models
	2.3.2 The Training Data
	2.3.3 Internals of Deep Learning

	2.4 Threats to Validity
	2.5 Related Work
	2.6 Conclusions and Future Work
	2.7 Acknowledgements
	2.8 Bibliography

	3. DEEPDFA: DATAFLOW ANALYSIS-INSPIRED DEEP LEARNING FOR EFFICIENT VULNERABILITY DETECTION
	3.1 Introduction
	3.2 Overview
	3.3 Rationale
	3.3.1 Dataflow Analysis for Vulnerability Detection
	3.3.2 Analogy of Graph Learning and Dataflow Analysis
	3.3.3 The Novelty of Our Work

	3.4 Approach
	3.4.1 Abstract Dataflow Embedding
	3.4.2 Using Graph Learning to Propagate Dataflow Information

	3.5 Evaluation
	3.5.1 Implementation
	3.5.2 Experimental setup
	3.5.3 Effectiveness
	3.5.4 Efficiency
	3.5.5 Generalization
	3.5.6 Ablation studies

	3.6 Threats to Validity and Discussions
	3.7 Related Work
	3.8 Conclusions and Future Work
	3.9 Acknowledgements
	3.10 Bibliography
	3.A Appendix: Baseline reproductions
	3.B Appendix: Programs that are removed
	3.C Appendix: Additional effectiveness results
	3.D Appendix: Training times of all models
	3.E Appendix: Model sizes
	3.F Appendix: Additional cross-project evaluation results

	4. TRACED: EXECUTION-AWARE PRE-TRAINING FOR SOURCE CODE
	4.1 Introduction
	4.2 Overview
	4.3 Tracing & Feature Engineering
	4.3.1 Representing Program States
	4.3.2 Quantized Variable Values
	4.3.3 Building Learnable Labels for Code Models

	4.4 Model
	4.4.1 Execution-aware Pre-training
	4.4.2 Task-specific Fine-tuning

	4.5 Experimental Setup
	4.5.1 Trace Collection
	4.5.2 Dataset
	4.5.3 Model Configuration

	4.6 Evaluation
	4.6.1 RQ1. Effectiveness of TRACED in Static Estimation of Execution
	4.6.2 RQ2. Effectiveness of TRACED's Pre-training Objectives
	4.6.3 RQ3. Effectiveness of TRACED's Quantized Variable Values
	4.6.4 RQ4. TRACED's Performance in Code Understanding Tasks

	4.7 Related Work
	4.8 Threats to Validity
	4.9 Conclusion
	4.10 Acknowledgments
	4.11 Bibliography

	5. TO ERR IS MACHINE: VULNERABILITY DETECTION CHALLENGES LLM REASONING
	5.1 Introduction
	5.2 Can LLMs Effectively Detect Vulnerabilities?
	5.3 Why do LLMs Fail to Reason About Vulnerabilities?
	5.3.1 Does Model Size Matter?
	5.3.2 Do Model Training Data & Methods Matter?
	5.3.3 Does Additional Domain Knowledge Help?

	5.4 Related Work
	5.5 Conclusion
	5.6 Bibliography
	5.A Appendix: Vulnerability detection prompts
	5.B Appendix: Models
	5.C Appendix: Benchmarks for other domains
	5.D Appendix: Simple CWE examples
	5.E Appendix: Error analysis methodology
	5.E.1 Inter-rater agreement
	5.E.2 Error analysis UI
	5.E.3 Error categories

	6. CLOSING THE GAP: A USER STUDY ON THE REAL-WORLD USEFULNESS OF AI-POWERED VULNERABILITY DETECTION & REPAIR IN THE IDE
	6.1 Introduction
	6.2 User Study Interface
	6.2.1 IDE Integration
	6.2.2 Model Architecture & Training
	6.2.3 Evaluating Detection and Fix Capabilities

	6.3 User Study Design
	6.3.1 Study Design

	6.4 User Study results
	6.4.1 RQ1: Is DeepVulGuard useful in practice?
	6.4.2 RQ2: Which aspects of vulnerability detection + fix tools are most useful?
	6.4.3 RQ3: What features do developers want from vulnerability detection + fix tools?

	6.5 Discussions
	6.6 Threats to Validity
	6.7 Related Work
	6.8 Conclusions
	6.9 Bibliography
	6.A Appendix: Detection model
	6.A.1 Training procedure
	6.A.2 Dataset statistics
	6.A.3 Full list of languages in the training dataset, by file extension
	6.A.4 Hyperparameters

	7. GENERAL CONCLUSION
	7.1 Summary of Contributions
	7.2 Future Work
	7.3 Bibliography

