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ABSTRACT 

Vulnerability detection tools are essential for ensuring security while maintaining software 

development velocity. Deep Learning (DL) has shown potential in this domain, often surpassing 

static analyzers on certain open-source datasets. However, current DL-based vulnerability 

detection systems are limited, resulting in models that are poorly understood, inefcient, and 

struggle to generalize, and their applicability in practical applications is not well understood. In 

this dissertation, we comprehensively evaluate state-of-the-art (SOTA) DL vulnerability detection 

models, including Graph Neural Networks (GNNs), fne-tuned transformer models, and Large 

Language Models (LLMs), yielding a deeper understanding of their benefts and limitations and a 

body of approaches for improving DL for vulnerability detection using static and dynamic 

analysis. 

First, we empirically study the model capabilities, training data, and model interpretation of 

fne-tuned graph neural networks and transformer models and provide guidance on understanding 

model results, preparing training data, and improving the robustness of the models. We found 

that state-of-the-art models were limited in their ability to leverage vulnerability semantics, which 

are critical aspects of vulnerability detection. 

Building on these fndings, we developed DeepDFA and TRACED, which integrate static and 

dynamic analysis into DL model architecture and training. DeepDFA is a GNN architecture and 

learning approach inspired by datafow analysis. DeepDFA outperforms several other 

state-of-the-art models, is efcient in terms of computational resources and training data, and 

generalizes to novel software applications better than other SOTA approaches. TRACED is a 

transformer model which is pre-trained on a combination of source code, executable inputs, and 

execution traces. TRACED improves upon statically pre-trained code models on predicting 



xv 

program coverage and variable values, and outperforms statically pre-trained models in two 

downstream tasks: code clone retrieval and vulnerability detection. 

Additionally, we evaluate large language models (LLMs) for vulnerability detection using 

SOTA prompting techniques. We fnd their performance is hindered by failures to localize and 

understand individual statements, and logically arrive at a conclusion, and suggest directions for 

improvement in these areas. 

Finally, we introduce DeepVulGuard, an IDE-integrated tool based on DL models for 

vulnerability detection and fxing. Through a real-world user study with professional developers, 

we identify promising aspects of in-IDE DL integration, along with critical issues such as high 

false-positive rates and non-applicable fxes that must be addressed for practical deployment. 



1 

CHAPTER 1. GENERAL INTRODUCTION 

Static analysis has become a critical component of software developer workfows, intended to 

facilitate rapid growth and development while preventing bugs and increasing security [1, 9, 11, 4]. 

Deep Learning models have demonstrated substantial improvements in performance on the task 

of vulnerability detection, even outperforming static analyzers on open-source vulnerability 

datasets [10, 8, 2]. This advent of high-performing models enables new applications for developers 

to use these models as static analysis tools to detect vulnerabilities during development. 

However, there is more to the usage of these models than performance metrics measured on 

singular benchmarks. We must understand in which situations these models work, how they 

perform in realistic scenarios, what their limitations are, and how to overcome these limitations. 

In order to enable practical deployment, it’s also important to maintain their efciency so that 

they can scale to widespread use, including use on consumer hardware. The key problem which we 

study in this dissertation is: How can we utilize deep learning models to efectively detect security 

vulnerabilities in the real world? 

To this end, we empirically studied state-of-the-art deep learning models, including graph 

neural networks, fne-tuned transformers, and large language models, on a wide variety of 

datasets. We found that the models often failed because they lacked knowledge of vulnerability 

semantics, as a result of training on purely textual data. Based on the fndings of our empirical 

study, we designed approaches for integrating static and dynamic analysis into deep learning 

models: DeepDFA and TRACED. We show that both approaches successfully improved model 

performance, with DeepDFA showing greater generalization and efciency. 

Beyond evaluations on ofine vulnerability datasets, deep learning models have not been 

widely applied in software development. We deployed state-of-the-art detection and fxing models 
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in an IDE-integrated application and studied its usefulness with professional software developers 

in real-world usage scenarios. 

1.1 Contributions 

This dissertation represents a step forward in understanding and improving the capabilities 

and applicability of deep learning-based vulnerability detection models. We make the following 

contributions: 

Empirical study of deep learning models: At the time of writing, several papers have 

proposed new deep learning models based on technical improvements to model architectures, most 

notably fne-tuned Graph Neural Networks (GNNs) and fne-tuned transformer-based “Small” 

Language Models (SLMs) and Large Language Models (LLMs). However, beyond comparing with 

baseline models on benchmarks (which have several limitations, demonstrated in preceding and 

contemporary studies [5, 3, 6]), little was understood about how the models would perform in 

more realistic scenarios. We comprehensively evaluated fne-tuned SLMs in Chapter 2 and LLMs 

in Chapter 5 in order to understand in which settings the state-of-the-art models performed best, 

where they failed, and what could be done to improve them. Based on our results, we provided 

concrete recommendations which directly drive model improvements in Chapters 3 and 4. 

Integration of static and dynamic analysis with deep learning models: DeepDFA 

(Chapter 3) represents the frst integration of static datafow analysis with deep learning models 

for vulnerability detection. We show that integrating datafow analysis allowed DeepDFA to 

perform more efectively and efciently than other state-of-the-art models, as well as generalize to 

real-world vulnerabilities in a novel dataset. TRACED (Chapter 4) represents the frst application 

of dynamic execution-aware fne-tuning to deep learning models for vulnerability detection. We 

show that execution-awareness allowed TRACED to outperform other vulnerability detection and 

code clone detection models, as well as identify execution-based information about source code 

more accurately than prior pre-trained models which were trained only on static source code. The 
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integration of static and dynamic analysis techniques introduces a new paradigm for model 

architectures, which allows models to make more precise and nuanced predictions. 

User-facing implementation and user study: Beyond benchmark evaluations, the 

instantiation and deployment of a deep learning-based user-facing tool presents many practical 

challenges, such as delivering model predictions with low latency, presenting fxes in an actionable 

way, and dealing with false positives. We implemented DeepVulGuard, which combined 

state-of-the-art SLMs and LLMs to surface vulnerability detection alerts in an IDE, and leveraged 

LLMs to suggest fxes for the vulnerabilities. We conducted an empirical user study, providing the 

frst view of vulnerability detection + fxing models in a real-world setting, and report novel 

fndings which refect on the models’ benefts, efective performance, and pain points. We show 

that, although current deep learning models are not yet ready for deployment, they bear great 

promise, and lay out concrete recommendations for further development of this technology for 

real-world applications. 

The majority of this dissertation is adapted from peer-reviewed work published in top-tier 

software engineering conferences. Chapter 2 is based on a paper [13] published at the 

International Conference on Software Engineering (ICSE 2023). Chapters 3 and 4 are based on 

papers [12, 7] both published at the International Conference on Software Engineering (ICSE 

2024). Chapter 5 is based on a paper submitted to the International Conference on Learning 

Representations (ICLR 2025). Chapter 6 is based on a paper published at the International 

Conference on Software Engineering (ICSE 2025). 

1.2 Outline 

The dissertation is organized as follows: Chapter 2 presents our empirical study, studying and 

providing recommendations for DL model capabilities, training data, and model interpretation. 

Chapter 3 introduces our proposed vulnerability detection model, DeepDFA, a GNN inspired by 

datafow analysis. Chapter 4 introduces TRACED, our proposed method for execution-aware 
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language model pretraining. Chapter 5 presents our comprehensive empirical study of LLM 

performance and reasoning errors for vulnerability detection. Chapter 6 presents our user study 

on DeepVulGuard, an IDE-integrated deployment of DL-based vulnerability detection and fx 

models. Chapter 7 concludes the dissertation. 
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CHAPTER 2. AN EMPIRICAL STUDY OF DEEP LEARNING MODELS 

FOR VULNERABILITY DETECTION 

Benjamin Steenhoek1 , Md Mahbubur Rahman2 , Richard Jiles3 , and Wei Le4 

1-4 Department of Computer Science, Iowa State University, Ames, IA, 50011 

Modifed from a manuscript published in the 45th International Conference on Software 

Engineering (ICSE 2023) 

Abstract 

Deep learning (DL) models of code have recently reported great progress for vulnerability 

detection. In some cases, DL-based models have outperformed static analysis tools. Although 

many great models have been proposed, we do not yet have a good understanding of these models. 

This limits the further advancement of model robustness, debugging, and deployment for the 

vulnerability detection. In this chapter, we surveyed and reproduced 9 state-of-the-art (SOTA) 

deep learning models on 2 widely used vulnerability detection datasets: Devign and MSR. We 

investigated 6 research questions in three areas, namely model capabilities, training data, and 

model interpretation. We experimentally demonstrated the variability between diferent runs of a 

model and the low agreement among diferent models’ outputs. We investigated models trained 

for specifc types of vulnerabilities compared to a model that is trained on all the vulnerabilities 

at once. We explored the types of programs DL may consider “hard” to handle. We investigated 

the relations of training data sizes and training data composition with model performance. 

Finally, we studied model interpretations and analyzed important features that the models used 

to make predictions. We believe that our fndings can help better understand model results, 

provide guidance on preparing training data, and improve the robustness of the models. All of our 

datasets, code, and results are available at https://doi.org/10.6084/m9.figshare.20791240. 

https://doi.org/10.6084/m9.figshare.20791240
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2.1 Introduction 

Deep learning vulnerability detection tools have achieved promising results in recent years. 

The state-of-the-art (SOTA) models reported 0.9 F1 score [14, 34] and outperformed static 

analyzers [11, 5]. The results are exciting in that deep learning may bring in transformative 

changes for software assurance. Thus, industry companies such as IBM, Google and Amazon are 

very interested and have invested heavily to develop such tools and datasets [26, 31, 19, 45]. 

Although promising, deep learning vulnerability detection has not yet reached the level of 

computer vision and natural language processing. Most of our research focuses on trying a new 

emerging deep learning model and making it work for a dataset like the Devign or MSR 

dataset [12, 46, 26]. However, we know little about the model itself, e.g., what type of programs 

the model can/cannot handle well, whether we should build models for each vulnerability type or 

we should build one model for all vulnerability types, what is a good training dataset, and what 

information the model has used to make the decisions. Knowing the answers to these questions 

can help us better develop, debug, and apply the models in practice. But considering the 

black-box nature of deep learning, these questions are very hard to answer. This chapter does not 

mean to provide a complete solution for these questions but is an exploration towards these goals. 

In this chapter, we surveyed and reproduced a collection of SOTA deep learning vulnerability 

detection models, and constructed research questions and studies to understand these models, 

with the goal of distilling lessons and guidelines for better designing and debugging future models. 

To the best of our knowledge, this is the frst paper that systematically investigated and 

compared a variety of SOTA deep learning models. In the past, Chakraborty et al. [6] have 

explored four existing models such as VulDeePecker [23], SySeVR [22] and Devign [46] and 

pointed out that the models trained with synthetic data reported low accuracies on real-world 

test set, and the models used spurious features like variable names to make the predictions. 

We constructed our research questions and classifed them into three areas, namely model 

capabilities, training data, and model interpretation. Specifcally, our frst goal is to understand 
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the capabilities of deep learning for handling vulnerability detection problems, especially 

regarding the following research questions: 

• RQ1 Do models agree on the vulnerability detection results? What are the variabilities 

across diferent runs of a model and across diferent models? 

• RQ2 Are certain types of vulnerabilities easier to detect? Should we build models for each 

type of vulnerabilities or should we build one model that can detect all the vulnerabilities? 

• RQ3 Are programs with certain code features harder to be predicted correctly by current 

models, and if so, what are those code features? 

Our second study focuses on training data. We aim to understand whether and how the 

training data size and project composition can afect the model performance. Specifcally, we 

constructed the following research questions: 

• RQ4 Can increasing the dataset size help improve the model performance for vulnerability 

detection? 

• RQ5 How does the project composition in the training dataset afect the performance of 

the models? 

Finally, our third investigation area is model intepretation. We used SOTA model explanation 

tools to investigate: 

• RQ6 What source code information the models used for prediction? Do the models agree on 

the important features? 

To answer the research questions, we surveyed the SOTA deep learning models and 

successfully reproduced 11 models on their original datasets (see Section 2.2). These models used 

diferent deep learning architectures such as GNN, RNN, LSTM, CNN, and Transformers. To 

compare the models, we managed to make 9 models work with the Devign and MSR, two popular 
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datasets. We selected the two datasets because (1) both of the datasets contain real-world 

projects and vulnerabilities; (2) the majority of models are evaluated and tuned with the Devign 

dataset in their papers; and (3) the MSR dataset contains 310 projects and its data have 

annotations on vulnerability types, which are needed to study our RQs. We discovered the 

fndings for our 6 RQs with carefully designed experiments (Section 2.3) and considerations of the 

threats (Section 2.4). In summary, our research contributions include: 

1. We conducted a comprehensive survey for the deep learning vulnerability detection models. 

2. We delivered a reproduction package, consisting of the trained models and datasets for 11 

SOTA deep learning frameworks with various study settings; 

3. We designed 6 RQs to understand model capabilities, training data and model 

interpretation; 

4. We constructed the studies and experimentally obtained the results for the RQs; and 

5. We prepared interesting examples and data for further studying model interpretability. 

2.2 A Survey of Models and their Reproduction 

To collect the SOTA deep learning models, we studied the papers from 2018 to 2022 and also 

used Microsoft’s CodeXGLUE leaderboard 1 and IBM’s Defect detection D2A leaderboard 2 . We 

worked with all the open-source models we can fnd, and successfully reproduced 11 models. The 

complete list of models and the reasons we failed to reproduce some models are given in our data 

replication package. 

As shown in Table 2.1, the reproduced models cover a variety of deep learning architectures. 

Devign [46] and ReVeal [6] used GNN on property graphs [46] that integrate control fow, data 

dependencies and AST. ReGVD[29] used GNN on tokens. Code2Vec used multilayer perceptron 

(MLP) on AST. VulDeeLocator [21] and SySeVR [22] are based the sequence models of RNN and 

1https://microsoft.github.io/CodeXGLUE 
2https://ibm.github.io/D2A 

https://microsoft.github.io/CodeXGLUE
https://ibm.github.io/D2A
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Table 2.1: 11 Reproduced Models. 

Model Year Architecture Dataset 

Devign [46] 2019 
GNN, 
property graph 

Devign 

ReVeal [6] 2021 
GNN, 
property graph 

Devign, ReVeal 

ReGVD [29] 2022 GNN, token Devign 

CodeBERT [13] 2020 Transformer Devign 

VulBERTa-CNN [15] 2021 Transformer, CNN 
VulDeePecker, 
Draper, 
ReVeal 

VulBERTa-MLP [15] 2021 Transformer, MLP 
µVulDeePecker, 

PLBART [2] 2021 Transformer Devign, D2ADevign 
LineVul [14] 2022 Transformer MSR 

Code2Vec [8] 2021 MLP, AST Devign 

SeSyVR [22] 2018 RNN SARD, NVD 
VulDeeLocator [21] 2020 Bi-LSTM SARD, NVD 

Bi-LSTMs. Recent deep learning detection used pre-trained transformers, including 

CodeBERT [13], VulBERTa-CNN [15], VulBERTa-MLP, PLBART [2] and LineVul [14] 

For our RQs, we used the Devign [46] and MSR [12] datasets. We studied the datasets used in 

these 11 models in their original papers, shown under Dataset in Table 2.1. We found that the 

Devign dataset has been evaluated and tuned in 8 out of 11 models. It is a balanced dataset 

consisting of roughly the same number of vulnerable and non-vulnerable examples, a total of 

27,318 data points (each example is also called an data point). LineVul worked with the MSR 

dataset, which is a more recently available dataset. It is an imbalanced dataset, consisting of 10,900 

vulnerable examples and 177,736 non-vulnerable examples. These examples are labeled with their 

source projects and their Common Weakness Enumeration entries (CWE), which indicates the 

types of the vulnerabilities. We leverage such traits of the datasets for some of our RQs. 
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Table 2.2: Model reproduction on their original datasets. Reproduction results are reported as the 
mean of 3 random seeds. ’-’ indicates that the results for a metric were not reported in their papers. 
The numbers are in percentage. 

Paper Results Our Reproduction 

Model Acc Precision Recall F1 Acc’ Precision’ Recall’ F1’ 

Devign 59 54 63 57 56 50 71 59 
ReVeal 63 57 75 64 53 48 71 56 
ReGVD 63 - - - 62 62 46 52 
CodeBERT 62 - - - 64 59 54 55 
VulBERTa-CNN 64 - - - 64 60 59 59 
VulBERTa-MLP 65 - - - 63 60 58 59 
PLBART 63 - - - 62 58 59 59 
LineVul - 97 86 91 99 96 88 92 

Code2Vec 62 - - - 59 55 58 57 

SeSyVR 98 90 92 90 94 88 84 86 
VulDeeLocator 99 98 - 97 98 99 96 98 

We reproduced the results for the models using their original datasets and settings, shown in 

Table 2.2. The columns of A, P, R and F represents the commonly used metrics in deep learning 

vulnerability detection, including accuracy, precision, recall and F1. Our reproduction results are 

able to compute within 2% diference compared with the original papers in general. The 

exceptions are ReVeal, for which the authors confrmed that our results fxed a data leakage error 

in the original paper, and Devign, for which we used the third-party3 reproduction released by 

Chakraborthy et al. [6], as the original Devign code is not open-sourced. 

To enable the comparisons of the models, we improved the models’ implementations to 

support both Devign and MSR datasets. When running experiments for the RQs, we excluded 

VulDeeLocator and SeSyVR as they cannot be easily modifed for the Devign and MSR datasets. 

As a result, we used the rest 9 models for our studies of the RQs. 

3https://github.com/saikat107/Devign 

https://github.com/saikat107/Devign
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2.3 Research Questions and Findings 

We organized the research questions into three areas, namely model capabilities, training data, 

and model interpretation. See Sections 2.3.1 to 2.3.3 respectively. For each RQ, we present the 

motivation, study setup and our fndings. 

2.3.1 Capabilities of Deep Learning Models 

RQ1 Do models agree on the vulnerability detection results? What are the variabilities across 

diferent runs of a model and across diferent models? 

Motivation: It is known that deep learning model performance can vary across training runs 

when using diferent random seeds. In this RQ, we aim to measure for vulnerability detection, 

how much such variability actually exists. Additionally, we want to discover how much agreement 

exists across diferent deep learning models and across the models with similar architectures. We 

hope our fndings can inform developers and researchers of the uncertainty which potentially 

exists behind the numbers reported by such tools. 

Study Setup: We trained the models using 3 diferent random seeds on the same 

train/valid/test partitions of the Devign dataset. We used this dataset because almost all the 

models tuned their hyperparameters on it. We measured the percentage of stable inputs—-an 

input that has the same binary label for all 3 random seeds. We then compared the stable inputs 

across the models to measure their agreement. 

Findings: In Table 2.3, we reported the percentage of stable inputs for the entire dataset, under 

Total stability, and for the test dataset, under Test stability. We also reported the variations of the 

F1 score across 3 seeds (on test dataset) under σ Test F1. 

Our results show that on average 34.9% test data (30.6% total data) reported diferent 

predictions dependent on the seeds used in training. The GNN models that work on property 

graph ranked the top 2 variability; especially for ReVeal, for 50% of the test data, its outputs 

changed between runs. Code2Vec reported the least variability compared to the GNN and 

transformer models. Interestingly, we found that unstable inputs are associated with more 
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Table 2.3: Variability over 3 random seeds on Devign dataset. 

Model Total stability Test stability σ Test F1 

ReVeal 55% 50% 2.73 
Devign 57% 55% 2.24 
VulBERTa-MLP 60% 58% 3.13 
PLBART 72% 67% 1.03 
LineVul 72% 67% 3.46 
CodeBERT 72% 69% 2.78 
VulBERTa-CNN 74% 71% 2.60 
ReGVD 74% 72% 7.33 
Code2Vec 89% 77% 0.78 

incorrect predictions — stable inputs had a total of 19% incorrect predictions across all seeds and 

unstable had 47%. 

Although many examples reported diferent predictions between runs, we found that F1 test 

scores did not change as much, and had a standard deviation of 2.9 on average. That said, for 

most models, we expect 95% of performance measurements to be within a range of 5.8% above or 

below the mean performance when measured on multiple random seeds. 

Table 2.4: Agreement across diferent models. 

Model Total agreement Test agreement 

All 9 models 7% 7% 
All 3 GNN models 25% 20% 
Top 3 transformer models 44% 34% 
All 5 transformer models 29% 22% 

Table 2.4 shows that the deep learning models learned diverse classifers in that only 7% of 

the test data (and 7% total data) are agreed by all the models. The 3 GNN models agreed on 20% 

of test examples (and 25% total), whereas the 3 top performing transformers (LineVul, PLBART, 

and VulBERTa-CNN) agreed on 34% test data (and 44% total). But when we compared all 5 

transformer models, only 22% of test examples (and 29% total) are agreed. The low agreement 
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among diferent models implies that when there are no ground truth labels, a diferential testing 

approach that compares across models as an oracle may have limited uses. 

RQ2 Are certain types of vulnerabilities easier to detect? Should we build models for each type of 

vulnerabilities or should we build one model that can detect all vulnerabilities? 

Motivation: In traditional software assurance techniques such as program analysis, we use 

diferent algorithms to detect diferent vulnerabilities. Certain types, e.g., infnite loops, are more 

difcult to detect than other types, e.g., memory leaks, because one requires to track symbolic 

values and reasoning about the loops, and the other only needs to check if the memory free is 

invoked after its allocation. In this RQ, we are interested to learn whether for deep learning 

vulnerability detectors, it is also true that certain types of vulnerabilities are easier to detect than 

the others. Considering diferent types of vulnerabilities have diferent semantics and root causes, 

we also want to gain some insights as to whether we should build a model for each type of 

vulnerability or for vulnerability in general (without separating them into the types), like most 

current work has done. 

Table 2.5: Five types of vulnerabilities. 

Vulnerability Type Total CWE examples 

Bufer overfow 37,291 CWE-125, CWE-787 
Value error 15,126 CWE-190, CWE-369 
Resource error 33,748 CWE-415, CWE-404 
Input validation error 25,514 CWE-134, CWE-89 
Privilege escalation 32,749 CWE-264, CWE-255 

Study Setup: Here, we study models based on the vulnerability types, and thus we used the 

MSR dataset. The examples in the MSR dataset are annotated with CWE 4 . Using these CWE 

types, we group the vulnerabilities into 5 categories, namely bufer overfow, value error, resource 

error, input validation error, and privilege escalation, shown under Vulnerability Types in 

Table 2.5. Our criteria are that (1) each group contains the bugs of similar root causes and 

4https://cwe.mitre.org 

https://cwe.mitre.org
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semantics, and (2) each group has a sufciently large dataset for efectively training the models. 

Column Total lists the number of the examples collected from the MSR datasets, including all 

vulnerable and their patched examples that have a CWE annotation. 

Specifcally, bufer overfow is caused by reading or writing to the memory outside the bounds 

of the bufer, e.g, CWE-125 “Out-of-bounds Read” and CWE-787 “Out-of-bounds Write”. The 

mapping of the complete CWE list to the 5 groups is given in our dataset. Value error includes 

the examples of CWE-190 “Integer Overfow”, CWE-369 “Divide By Zero” and CWE-682 

“Incorrect calculation”. Such errors are caused by propagating incorrect values through data 

processing or arithmetic operations. Resource error is caused by incorrectly freeing or using a 

resource such as memory or a fle pointer, and are typically detected using typestate analysis [35]. 

The CWE examples include CWE-415 “Double Free” and CWE-404 “Improper Resource 

Shutdown”. Input validation error is caused by using an external input without validating 

whether it is correct/benign, e.g., CWE-134 “Use of Externally-Controlled Format String” and 

CWE-89 “Improper Neutralization of Special Elements used in an SQL Command” (‘SQL 

Injection’). They are often detected using taint analysis [39]. Finally, Privilege escalation is caused 

by missing proper permission checks and allowing an unauthorized entity to execute privileged 

commands or view privileged data, such as CWE-264: “Permissions, Privileges, and Access 

Controls”, and CWE-255: “Credentials Management Errors”. 

We partitioned the dataset for each bug type into train, valid, and test datasets with 

80%/10%/10% ratios. We trained 5 models using the 5 groups of bugs respectively, as well as a 

Combined Model trained with all the bug types for comparison. This refects the real-world 

scenarios in that a model trained with specifc vulnerability type may be more focused, but the 

combined model can train with more data. We report the same-bugtype performance and 

cross-bugtype performances for each model. The same-bugtype performance reports the test F1 

score when the training and test data have the same bug type. The cross-bugtype performances 

report the test F1 scores when the training and test data have diferent bug types. 
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Figure 2.1: Same-bugtype and cross-bugtype performance. Bars indicates same-bugtype perfor-
mance; circles indicate cross-bugtype performance for each other bugtype. 

In this experiment, VulBERTa-CNN, VulBERTa-MLP and some models for Code2Vec did not 

report valid results because they always predicted the same class on the test data. 

Findings: We present out results in Figure 2.1. The bars report the F1 score for the 

same-bugtype setting, and the circles report the cross-bugtype performances. Each bug type is 

associated with 4 cross-bugtype test sets, and thus we have four circles for each bar, except that 

the combined model has fve circles, each of which represents running tests for a bug type on the 

combined models. 

Analyzing same-bugtype performance, we found that the models did not always agree on 

which type of vulnerability is the easiest, and diferent types of vulnerabilities have achieved the 

best F1 score in diferent models. Interestingly, Input validation and Resource errors (the orange 

and red bars) often reported lower performance than the other types. On the contrary, Bufer 

overfows and Value errors (the blue and purple bars) often reported better performance 

compared to other types. In traditional program analysis, these types are harder to detect 

because they require tracking variable values, and sometimes reasoning about loops. 

Devign and ReVeal used GNN architectures on the property graphs. Their bars show the 

similarities. For the rest of the models, resource errors (the red bars) manifest the lowest 

performance among the 5 vulnerability types. One possibility is that resource allocation and free 
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can be located far apart in the code, and the transformer models cannot capture such long range 

dependencies. Another possibility is that such errors cover a variety of resources, and the training 

dataset may not contain sufcient data for each resource for the model to extract the patterns. 

The combined model (the brown bar) is generally less performant compared to the models 

trained with a specifc type of vulnerability, but for some vulnerability types like Input validation 

and Resource errors, the combined model can perform better. For example, for CodeBERT, the 

combined model achieved higher F1 compared to all of the other 5 models. The circles inside the 

brown bar show that Privilege escalation and Resource errors reported relatively low accuracy, 

but for all of the vulnerability types, the combined model reported better performance compared 

to the type specifc models. 

Analyzing cross-bugtype performance, we found that for the most of time, cross-bugtype 

detection reports much lower performance except LineVul, implying that diferent vulnerability 

types represent diferent data distributions. LineVul seems to handle value errors very well. When 

applying models trained with other vulnerabilities, value errors reported higher performance than 

the same-bug performance. 

RQ3 Are programs with certain code features harder to be predicted correctly by the current 

vulnerability detection models, and if so, what are those code features? 

Motivation: Here, we investigated whether we can characterize the programs that cannot be 

predicted well and are “hard” to deep learning models, and whether diferent models agree on such 

difculties. Knowing what programs we cannot handle gives a good target for our future work to 

improve upon. In program analysis, we know that certain features are hard to handle, such as 

loops and pointers. We want to know whether these features are also hard for deep learning. 

Study Setup: In the frst step, we prepared a list of code features for investigation. We think it 

is interesting to compare with program analysis tools regarding what types of programs are hard 

to handle. So our approach is to list code features that are important to program analysis, and 

then check if they also made a diference for deep learning tools. 
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We obtained a total of 12 code features. Some are control fow related, e.g., the structures of 

while, for, if, goto, call and switch as well as unconditional jumps of break, continue, return; some 

are data structure and pointer related, e.g., arrays and pointers (including the feld accesses); and 

fnally some are auxiliary structures such as comment and macro. Based on this feature list, we 

applied the tree-sitter 5 parser to count the frequency of code features present in each function. 

To understand whether certain code features make deep learning models harder to predict, we 

used a multivariate logistic regression (LR) model (see Eq. 1) to associate the code features with 

the likeliness of a function being predicted correctly. If a function with certain code features is 

more likely predicted correctly, we consider it as easier to deep learning, and vice versa. Given a 

function with a particular feature composition, Y in Eq. 1 reports the predicted probability that 

the deep learning model will predict it correctly. xi is the count of each code feature in the 

function. βis are the coefcients learned from the data. Each βi is associated with one code feature 

xi. When βi is negative, the value βi ∗ xi decreases the predicted probability of correctness, so we 

term these features to be difcult for the model. Likewise, code features with positive coefcients 

are termed to be easy. Meanwhile, a large βi implies that the increase in the count of code feature 

xi greatly increases the predicted probability of correct prediction, and vice versa. 

X 
Y = σ( βi ∗ xi + β0) (2.1) 

i 

We trained the LR model on the predictions made on the validation set, and then used the 

trained LR model to fnd difcult/easy examples from the test set. To quantify the difculty of an 

example in test set, we used the logit input to the sigmoid function in the LR model: X 
ℓ(x) = βi ∗ xi. We denote the negation of this quantity as the difculty score. A function with 

i 
a higher difculty score is expected to be more likely predicted incorrectly than a function with a 

lower difculty score. To evaluate the efectiveness of this LR model, we selected the top and 

bottom 10% of examples in the test set, sorted by their difculty scores. We then evaluate the 

5https://tree-sitter.github.io/tree-sitter/ 

https://tree-sitter.github.io/tree-sitter/
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Figure 2.2: Comparative performance on evaluation sets selected according to LR model difculty 
score, averaged over 3 random seeds on the Devign dataset. “Original” is the performance on the 
original test set, reported in Table 2.2. 

predictions of our LR model by comparing the model performance on the easy and difcult 

datasets we selected. 

It should be noted that initially we have tried statistical signifcance tests and 

correlation-based methods to link code features with the model accuracy. Then, we realized that 

these approaches consider only one feature a time. For example, the functions with 3 loops, 400 

pointers, and 500 macros perform well, while those with 300 loops, 300 pointers and 100 macros 

perform bad. We cannot conclude whether the performance diference is due to the loops, pointers 

or macros. On the other hand, the LR model incorporates multiple code features at once and 

considers the efect of combinations of the features. 

Findings: Figure 2.2 shows that all 9 models performed better on the easy dataset than on the 

difcult set. The average diference between easy/difcult performance was 10.3% for all models. 

For the majority of models (7 out of 9), the original test set performance lies between the 

performances of difcult and easy sets. These results demonstrate that the LR model and 

difculty score are efective for choosing difcult and easy examples for the deep learning models. 
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Figure 2.3: Coefcients of LR models trained on the stable examples from the Devign dataset. 

Figure 2.3 plots the coefcients of each code feature in the LR model trained for each deep 

learning model. We found that the dots for the features call, length, and pointers are grouped 

together for all the models, implying that all the models agreed on the importance of these 

features. Interestingly, all of these dots are located near 0, which indicates that the features did 

not have a large efect. On the other hand, the features for, goto, if, jump, switch, and while 

varied the across models. These are all control fow related structures. 

We also observed that for all the models, arrays and switch are associated with the positive 

coefcients, and that for the majority of models, if, goto, and while fall into the negative 

ranges. In particular, if had a negative coefcient for all the models. The high number of if, 

goto, and while in a program indicates its high cyclomatic complexity [28], and this type of 

program is also challenging for program analysis. Especially, property graph-based models like 

Devign use control fow information, so it makes sense that features for, goto, jump and while 

were all negative (hard). 



21 

2.3.2 The Training Data 

RQ4 Can increasing the dataset size help improve the model performance for vulnerability 

detection? 

Motivation: High-quality vulnerability detection data are hard to obtain. In the past, we used 

automatic labeling methods such as static analysis and mining change commits. These approaches 

can introduce incorrect labels [6]. We also used manual labels [46], which are slow to produce [24]. 

This research question helps us understand whether currently available datasets are large enough 

to train the models, and whether increasing the dataset size can signifcantly improve the model 

performance. 

Study Setup: To investigate this RQ, we combined the Devign and MSR datasets, namely, 

Imbalanced-dataset. Since the projects used in Devign overlap with the projects used in MSR, we 

excluded 82 duplicated examples where the commit IDs are matched. This generates a dataset of 

194,285 examples in total. Some of the published models are originally tuned on the balanced 

model such as Devign, so we also constructed a Balanced-dataset of 45,363 examples by taking all 

the vulnerable examples in MSR and then randomly undersampling an equal number of 

non-vulnerable examples. For each dataset, we held out 10% data as the test set for all the 

models. Then we prepared 10%, 20% ... 90%, 100% of the rest of the data to train 10 models to 

observe how the F1 score for test set changes when the dataset size increases. In addition, we 

prepared two small datasets of 1% and 5% of the total data to experiment what is the minimum 

amount of the data needed for the model being able to learning something. 

Findings: We summarized our results in Figure 2.4. Figures 2.4a and 2.4b show a similar trend. 

Generally, all the models increased in performance when we added more data. However, the 

improvement was not signifcant. Comparing 100% data with 10%, the F1 on test set reported no 

diference when we take an average over all the models for the Balanced dataset. For the 

Imbalanced dataset, the value of F1 score improved 0.16 on average. 

In Figure 2.4a, among the models, only LineVul showed consistent improvement when we 

added 10% more data each time. All other models fuctuated when we increased the training 
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(a) Results on Balanced-dataset. 100% dataset size = 
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(b) Results on Imbalanced-dataset. 100% dataset size = 
194,285. 

Figure 2.4: F1 score on a held-out test set when models are trained with increased portions of the 
training dataset. 

dataset, which indicates that the increasing data does not always bring beneft. For example, for 

VulBERTa-MLP, the F1 value drops an average 0.1 over the course of increasing the dataset sizes. 

The performance of the model trained with 100% of the dataset is 0.08 less than the performance 

of the model trained with 10% of the dataset. It seems that other factors rather than the dataset 

size has played a much signifcant role in terms of performance. In Figure 2.4b, ReVeal is the 

model that improves the most with the increased dataset. At 100% dataset, ReVeal is catching up 

the best model LineVul. However, Devign, which has a similar architecture of using GNN on the 

property graph, does not show this beneft of additional data. 

The experiments on models with the small datasets (consisting of 1% and 5% total data) 

showed that surprisingly, we can bring the models up to good performance only using 5% (about 

2268 data points and 1134 vulnerable examples) for most of the models except CodeBERT, when 

learning with the balanced data. When learning with the imbalanced data, the turning point 

comes a little later. For example, ReGVD and CodeBERT require 50% (96.4 k) and 30% (57.8 k) 

of the total data. The other models need about 5–10% of the data (9.7–19.4 k) to reach a high 

point. Interestingly, this dataset has 10.8% vulnerable examples; that said, the models needed 
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about 1048-2095 vulnerable examples to achieve good performance—a comparable amount of 

vulnerable examples to the setting of the Balanced dataset. 

RQ5 How does the project composition in the training dataset afect the performance of 

vulnerability detection models? 

Motivation: In this RQ, we aim to further understand how to compose a good training dataset 

for vulnerability detection. Specifcally, we are interested to know whether the diversity of the 

projects in the training dataset helps. We are also interested to learn whether diferent projects 

indeed represent diferent distributions such that when the test and training data come from the 

same projects, the model can signifcantly perform better, and when the training and test data 

are from diferent projects, whether the models can generalize over unseen projects. 

Study Setup: We designed two experiments for this study. In the frst experiment, we prepared 

a non-diverse training dataset and a diverse training dataset, and compared the models trained 

with the two datasets on the same test set. In the MSR dataset, we found that Chrome contains 

76k examples and is the largest among all the 310 projects. We used it as the non-diverse dataset. 

We performed this experiment in a 5-fold cross validation setting to eliminate the potential biases 

that may exist when selecting projects. For each fold, we randomly sampled 10 k examples from 

the MSR dataset as a test set. We then excluded Chrome and the projects used in the test set, 

and randomly sampled a total of 76 k examples (the same number as Chrome has) from the 

remaining projects. The average number of projects in the diverse dataset is 50.6 across 5 folds. 

In the second experiment, we prepared a mixed-projects setting where the test set is separated 

from the training set without considering the source project, and some examples in the training 

and test sets may originate from the same projects. This is the setting where most of our deep 

learning papers are evaluated with. We also constructed a cross-projects setting where the test set 

examples must originate from diferent projects than the projects represented the training set. 

This setting helps us understand whether we will have a signifcant performance degradation 

when using an of-the-shelf trained deep learning vulnerability detection models that have not 

seen the test projects. 
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We also used the MSR dataset in a 5-fold cross validation setting. For each fold, we frst 

constructed a test set for the cross-project setting by including all the examples from randomly 

chosen projects, until the set contained at least 10k examples. Because each project had a 

diferent number of examples, the resulting set was slightly larger than 10k examples. We then 

constructed a test set for the mixed-project setting by randomly partitioning the remaining 

examples into test (10 k), validation (10 k), and training (the remaining examples, about 158 k) 

sets. We trained the model, using the 158 k training examples and 10 k validation set, then ran it 

on the test sets for both the cross-project setting and the mixed-project setting. 
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Figure 2.5: Studies on project composition in training data. The bar shows mean F1 and the interval 
shows standard deviation. 

Findings: The results for the frst experiment are presented in Figure 2.5. We used the boxplot 

to summarize the results of 5-fold cross-validation. To our surprise, we found that for all the 

models, the diverse training set does not provide any benefts compared to the training set that 

only consists of Chrome. In fact, 5 out of 6 models reported a higher median performance when 

trained on non-diverse data than on diverse data. 

For the second experiment, Figure 2.5b shows that mixed projects perform signifcantly better 

than cross projects for all the models (the average and the largest diferences in F1 score were 

0.11 and 0.32 respectively). This implies that seeing the data from one project can indeed help 
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predict other data from the same project. Vulnerability detection can greatly beneft from 

customized trained models compared to directly used already trained of-the-shelf models. For 

LineVul, the 5 folds reported very diferent performances in the cross-project setting, indicating 

that given a target test set, some projects are more useful for training than others. The results 

also imply that the models may learn to detect vulnerabilities from project-specifc attributes of 

the dataset, such as style, language features or naming conventions. We believe that this 

motivates further research into causal detection of bugs for generalization. 

2.3.3 Internals of Deep Learning 

RQ6 What code information do the models use for prediction? Do the models agree on the 

important features? 

Motivation: Recent deep learning vulnerability detectors have achieved high performance, e.g., 

LineVul reported 91% F1 score. We want to know why these tools can perform well, and whether 

the model has used any aspects of semantics of the vulnerability to make decisions. For example, 

to detect bufer overfows, a semantic-based program analysis tool identifes the dependent 

statements and reasons about the string lengths and bufer sizes. We also want to investigate 

whether diferent models agree on what are the important features. 

Study Setup: We surveyed a set of SOTA deep learning interpretation tools, especially for GNN 

and transformer architectures. We used GNNExplainer [43] for Devign and ReGVD, and 

LIT [38, 36, 32] for LineVul, VulBERTa-CNN, VulBERTa-MLP, CodeBert and PLBART, as 

among all the tools we investigated, these two tools can work with the most for our models. In 

our data reproduction package, we documented the reasons why the rest of the models cannot 

work with GNNExplainer and LIT, as well as the other intepretability tools we have tried. 

To explain the models, both of GNNExplainer and LIT provide scores to measure the 

importance of the code features. GNNExplainer gives a score for each edge in the graph, and LIT 

gives a score for each token in the program. To compare the results reported by GNNExplainer 

and LIT, we performed the following normalization on the output of the tools. For 
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GNNExplainer, we calculated the score of each node by taking the average scores of all of its 

incident edges, as what has been done in [20]. Each token in the node will use this score. For both 

GNNExplainer and LIT, we calculated the score for each source code line by summing up the 

scores for all the tokens of that line, following the literature [14]. For each example in the test 

dataset, we selected the top 10 highest scored lines, as done in [20, 14], to form the important 

feature set, denoted as I. We considered these 10 lines as the most important code features the 

model used to make a decision. 

To measure the similarity of the two important feature sets IA and IB reported by the models 

A and B, we calculated the intersection IAB = IA ∩ IB. We also used Jaccard index [18] as another 

metric, defned as: 

|IA ∩ IB |
J(IA, IB) = (2.2)

|IA ∪ IB | 

To report the similarity, we frst compute IAB and J(IA, IB ) for each program in the test set, and 

then we took the average for IAB and J(IA, IB ) respectively. 

We sampled examples from the following groups for manual inspection: 1) the example is 

vulnerable, and the model correctly detected it (correct); 2) the example is non-vulnerable, and 

the model predicted as vulnerable (false positive); and 3) the example is vulnerable, and the 

model predicted as non-vulnerable (false negative). 

Table 2.6: The similarity of important feature sets between every two models, measured by IAB 

(reported in blue) and J(IA, IB ) (in black). Max and min values are bold. 

Model LineVul CodeBERT PLBART Devign ReGVD VulCNN VulMLP 

LineVul - 0.58 0.31 0.38 0.60 0.32 0.40 
CodeBERT 6.84 - 0.37 0.35 0.50 0.31 0.40 
PLBART 4.08 4.89 - 0.24 0.27 0.30 0.28 
Devign 
ReGVD 

4.90 
6.88 

4.54 
5.86 

3.38 
3.58 

-

5.36 
0.42 
-

0.27 
0.33 

0.30 
0.40 

VulCNN 4.20 4.06 3.88 3.87 4.35 - 0.30 
VulMLP 4.83 4.74 3.71 3.95 4.83 3.97 -
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Findings: In Table 2.6, we reported the similarity of the important feature sets from every model 

pair. Our results show that Linevul and ReGVD have a maximum overlap among all the model 

pairs. Among the 10 lines ranked as the important features, the two models shared an average of 

6.88 lines. We found it interesting that although the models can have a lot of disagreement on 

individual predictions (See Table IV), the code information they used overlap. All the model pairs 

have at least 3 lines in common for the important features. Devign, as the only GNN model based 

on the property graph, has a low overlap with the other models and the lowest is with PLBART, 

on average 3.38 lines. PLBART used a diferent transformer architecture compared to the other 

transformer model, and also reported low overlaps with other transformer models. 

We have also analyzed the corrected predicted examples using the same approach as 

Table 2.6. We found that the important feature sets have more overlaps for the corrected 

examples, e.g., Linevul and ReGVD still have the most in common, sharing 7.29 lines in the 

important feature sets. 

Table 2.7: The frequently highlighted code features. 

Model error print alloc for memset memcpy while if 

LineVul 
CodeBERT 
PLBART 
Devign 
ReGVD 
VulCNN 
VulMLP 

.035 

.027 

.025 

.023 

.034 

.024 

.031 

.021 

.015 

.012 

.012 

.027 

.014 

.018 

.017 

.015 

.011 

.014 

.022 

.011 

.015 

.042 

.032 

.034 

.069 

.038 

.028 

.020 

.003 

.004 

.003 

.002 

.004 

.002 

.003 

.003 

.002 

.001 

.002 

.005 

.002 

.003 

.005 

.004 

.005 

.007 

.005 

.004 

.004 

.115 

.111 

.114 

.147 

.132 

.116 

.095 

Func .010 .010 .010 .026 .002 .002 .004 .108 

I/F 2.79 1.78 1.52 1.47 1.39 1.21 1.12 1.10 

From our manual inspection, we observed that the models commonly highlighted code lines of 

for, if, and while, as well as the function signatures as important features. The models also 

often highlighted memory operations of alloc, memset, and memcpy, as well as the lines which 

print error messages containing error or printf. To confrm this observation, we performed 
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profling on the code using these keywords and reported the results in Table 2.7. Using error as 

an example, without loss of generality, the frst 7 rows report the probability of error occurring 

in the important feature set for each model (total number of error in the important feature 

set/total number of lines in the important feature set). In Row Func, we show the probability of 

error occurring in a function (total number of error/total number of lines in a function). 

Comparing the two, we show that the probability of error occurring in the important feature sets 

is 2.79 times of the probability of error occurring in the program on average, shown in Row I/F. 

This implies that error is preferred to be selected into the important feature sets. Among all the 

features, error, print, and alloc ranked the highest ratios. 

Our second observation is that the transformer models sometimes made predictions without 

seeing the root cause. This is because the transformer models take a fxed-size input, and some 

code, sometimes including the root cause, is truncated. Interestingly, those models are still able to 

correctly predict whether a function is vulnerable with high F1 score. 

Third, we inspected the vulnerabilities that all the models missed and studied the important 

feature sets used to detect such vulnerabilities. We found that these vulnerabilities are very 

application specifc. The bugs are missed may because there are not sufcient training data for 

such types of bugs. 

In Listing 1, we show an example where the prediction is correct, but the features used are not 

causal. The example contains a memory leak vulnerability, and LineVul predicted the example as 

vulnerable. The memory allocated to name at line 14 is never released. The patch at line 23 showed 

a fx. The important feature set (top-10 lines) reported by LIT are highlighted in yellow. We can 

see that it includes the “patterns” we have discussed, including function signature at line 1, the 

lines that contain ERROR, e.g., lines 13 and 16, as well as the if statement at line 21. We also see 

that for this project, variable name len is important and included multiple times. However, none 

of the 10 lines cover the memory allocation at line 14, which is important to understand this bug. 

This example indicates that the models try to capture patterns of a vulnerability, instead of 

reasoning about the values, and have difculty capturing long range semantic dependencies in the 
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1 static int asf_read_ext_content(AVFormatContext *s, const GUIDParseTable *g) // (3) 
2 { 
3 ASFContext *asf = s->priv_data; 
4 AVIOContext *pb = s->pb; 

uint64 t size = avio rl64(pb); //(7) 
6 uint16 t nb desc = avio rl16(pb); //(8) 
7 int i, ret; 
8 for (i = 0; i < nb_desc; i++) { 
9 uint16 t name len, type, val len; //(5) 

uint8_t *name = NULL; 
11 name_len = avio_rl16(pb); 
12 if (!name_len) 
13 return AVERROR INVALIDDATA; //(6) 
14 name = av_malloc(name_len); 

if (!name) 
16 return AVERROR(ENOMEM); //(9) 
17 avio get str16le(pb, name len, name, //(4) 
18 name len); //(2) 
19 type = avio rl16(pb); //(10) 

val_len = avio_rl16(pb); 
21 if ((ret = process metadata(s, name, name len, val len, type, &s->metadata)) < 0) //(1) 
22 ret = process metadata(s, name, name len, val len, type, &s->metadata); 
23 av freep(&name); 
24 if (ret < 0) 

return ret; 
26 } 
27 } 

Listing 1: Memory leak successfully detected by LineVul. The top-10 lines reported by LIT are 
highlighted in yellow. 
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1 static int decode_frame(AVCodecContext *avctx, 
2 void *data, int *got frame, AVPacket *avpkt) // (1) 
3 { 
4 //...10 lines 
5 bytestream2 init(&s->gb, avpkt->data, avpkt->size); // (5) 
6 if ((ret = ff tdecode header(&s->gb, &le, &off))) { // (6) 
7 av_log(avctx, AV_LOG_ERROR, "Invalid TIFF header\n"); // (3) 
8 return ret; 
9 } else if (off >= UINT MAX - 14 || avpkt->size < off + 14) { // (4) 

10 av_log(avctx, AV_LOG_ERROR, "IFD offset is greater than image size\n"); // (2) 
11 return AVERROR_INVALIDDATA; 
12 } 
13 s->le = le; 
14 // TIFF BPP is not a required tag and defaults to 1 // (10) 
15 s->bppcount = s->bpp = 1; // (9) 
16 s->photometric = TIFF PHOTOMETRIC NONE; // (7) 
17 s->compr = TIFF RAW; // (8) 
18 // ...140 lines 

Listing 2: Non-vulnerable code is predicted as vulnerable because of spurious features. 

code. But we also observed in other examples that sometimes, the control structures and memory 

statements highlighted as important (see Table VII) can be a part of the dependent statements of 

the vulnerability, and thus they are useful for inspecting the root cause of the bugs. 

Listing 2 shows an example of a non-vulnerable function which LineVul erroneously predicted 

as vulnerable. The model highlighted the function signature (line 2), lines with “ERROR” (lines 7 

and 10), initialization routines (line 5), if (lines 6 and 9), and feld assignments (lines 15-17), and 

predicted the function as vulnerable. It showed that making decisions based on the patterns of 

these structures can lead to mistakes. 

2.4 Threats to Validity 

Our observations are drawn from the models and data sets available and may not be 

generalized for deep learning vulnerability detection in general. We used both a balanced dataset 

(Devign) and an imbalanced dataset (MSR) to mitigate this threat. The two datasets both 

included real-world bugs. Devign is used by most of the models in their evaluation, so we need it 

to reproduce the models (see Table 2.1). However, our datasets may still not be representative of 
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the real-world vulnerability distribution. We included all the models that we could fnd and 

reproduce. 

The grouping in RQ2 is subject to bias in that diferent researchers may divide vulnerability 

types diferently. Here, two of the authors who have the domain knowledge inspected the CWE 

list individually and discussed and agreed on the grouping. To mitigate the bias that may be 

brought in by the specifc project compositions, RQ5 performed 5-fold cross-validation. For RQ6, 

we selected the SOTA model interpretation tools; however, such techniques may not be perfect to 

identify the important features that the models use. The experiments for RQ2, RQ4 and RQ5 

require the models to work with our customized data that are not shipped with the models. We 

tried diferent random seeds for any suspicious data we have observed, e.g., when a model reported 

all 0s or 1s. We excluded such models in our results when tuning could not resolve the issues. 

2.5 Related Work 

Several works have done empirical studies of machine learning based vulnerability detection 

models. Chakraborthy et al. [6] studied 4 DL models, and investigated the issues of synthetic 

datasets, data duplication and data imbalance, and pointed out the use of spurious features, then 

used these to improve their model design. Tang et al. [37] aim to determine which neural network 

architectures, vector representation methods, symbolization methods are the best. They surveyed 

2 models. Mazuera-Rozo et al. [27] evaluated 1 shallow and 2 deep models on binary classifcation 

and bug type (non-binary) classifcation. After we completed our study, we found two related 

empirical studies. Lin et al. [25] evaluated 6 DL models’ generalization for 9 software projects. Ban 

et al. [3] evaluated 6 machine learning models (1 of which is a neural network) in a cross-project 

setting with 3 software projects, and also studied training on 2 bug types vs. a single bug type. 

Recently, many vulnerability detection models are proposed with a variety of architectures, 

such as MLP [8], RNN [23, 22, 21, 44], CNN [33, 41], Transformer [13, 30, 40, 10, 14, 2, 11, 15], 

and GNN [7, 9, 4, 20, 34, 5, 42, 17, 46, 6, 29, 16]. For example, Devign used gated graph neural 

network on property graphs [1]. LineVul [14] used a transformer model pretrained over a large 
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body of diverse open-source projects. ReVeal [6] applied SMOTE to address the data imbalance 

issue and triplet loss to learn to maximally separate vulnerable and non-vulnerable code. 

In these papers, most models were evaluated on in-distribution data, where the training set 

can contain projects and bug types which overlap with the test set. Russell et al. [33], Li et al. 

[23], and Xu et al. [42] trained their models to detect specifc kinds of vulnerabilities, and all found 

that some vulnerabilities were more difcult than others. Hin et al. [17] evaluated their model in a 

cross-project setting by holding out one project at a time and found that the performance was 

slightly degraded. Most model evaluations compared diferent baselines on metrics such as F1, but 

did not quantify the agreement on the predictions. To the best of our knowledge, our work is the 

frst attempt to characterize the programs and code features which the model cannot predict well. 

2.6 Conclusions and Future Work 

To understand deep learning vulnerability detection models, we performed an empirical study 

with 6 research questions. We experimentally show that on average, 34.9% test data have diferent 

predictions between runs, and only 7% of predictions are agreed across 9 models. Vulnerability 

detection based on a specifc type generally performs better than a model built for all 

vulnerabilities. The model performance does not increase signifcantly with an increased dataset, 

and for both balanced and imbalanced datasets, the models start performing well using around 1k 

vulnerable examples. We developed a logistic regression model that can fnd programs that are 

difcult for the model to predict correctly. The explanation tools showed that the models used 

common features to make predictions, ranging from 3.38-6.88 lines in common per top 10 

important lines. We report the code patterns that the models frequently highlighted as important 

features. In the future work, we plan to further investigate these patterns. 
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Abstract 

Deep learning-based vulnerability detection has shown great performance and, in some 

studies, outperformed static analysis tools. However, the highest-performing approaches use 

token-based transformer models, which are not the most efcient to capture code semantics 

required for vulnerability detection. Classical program analysis techniques such as datafow 

analysis can detect many types of bugs based on their root causes. In this chapter, we propose to 

combine such causal-based vulnerability detection algorithms with deep learning, aiming to 

achieve more efcient and efective vulnerability detection. Specifcally, we designed DeepDFA, a 

datafow analysis-inspired graph learning framework and an embedding technique that enables 

graph learning to simulate datafow computation. We show that DeepDFA is both performant 

and efcient. DeepDFA outperformed all non-transformer baselines. It was trained in 9 minutes, 

75x faster than the highest-performing baseline model. When using only 50+ vulnerable and 

several hundreds of total examples as training data, the model retained the same performance as 

100% of the dataset. DeepDFA also generalized to real-world vulnerabilities in DbgBench; it 

detected 8.7 out of 17 vulnerabilities on average across folds and was able to distinguish between 

patched and buggy versions, while the highest-performing baseline models did not detect any 

vulnerabilities. By combining DeepDFA with a large language model, we surpassed the 
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state-of-the-art vulnerability detection performance on the Big-Vul dataset with 96.46 F1 score, 

97.82 precision, and 95.14 recall. Our replication package is located at 

https://doi.org/10.6084/m9.figshare.21225413. 

3.1 Introduction 

Software vulnerabilities cause great harm to people and corporations. Many Internet users 

have had their personal information breached because of security vulnerabilities, with common 

reports of breaches exposing millions of records [52]. The average data breach costs the target 

company $4.24 million, according to IBM’s 2021 report [2]. The number of vulnerabilities is 

growing every year, as reported by the Common Vulnerability Enumeration (CVE) from 

2016-2021 [1]. Due to its importance, we urgently need to develop efective and automatic 

vulnerability detection tools. 

The rapid advance of AI technologies has motivated software companies to invest heavily in 

deep learning-based vulnerability detection tools [39, 55]. These tools have outperformed 

traditional static analysis [38, 20, 11]. Recently, large language models (LLMs) have reported 

state-of-the-art results; LineVul [24], a recent model based on CodeBERT, reported 91 F1 score 

on a commonly used real-world vulnerability dataset [22]. 

However, LLMs require large amounts of training data and computational resources for 

training and inference (see Section 3.5.4), but a large volume of high-quality vulnerability 

detection data is hard to get. They also can fail to detect vulnerabilities beyond the training 

dataset (see Section 3.5.5); for example, the top-performing transformer models LineVul and 

UniXcoder were not able to detect any of the real-world vulnerabilities in DbgBench [9]. 

Furthermore, by using solely text tokens, these models may not efectively learn program 

semantics, such as program values along paths, propagation of taint values, and security-sensitive 

API calls along the control fow paths. The performance of these models can be further improved 

when we consider such information (see Section 3.5.3). 

https://doi.org/10.6084/m9.figshare.21225413
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In this chapter, we explore the idea of combining datafow analysis (DFA) algorithms with 

deep learning to develop small, efcient, yet efective models for vulnerability detection. In prior 

literature [53, 16], deep learning integrated with domain-specifc knowledge and algorithms has 

reported improved performance and better generalization to unseen data, while using less data 

and computational resources. 

Datafow Analysis (DFA) computes the data usage patterns and relations in the control fow 

graph (CFG) of a program and reports a vulnerability based on its root cause, i.e., whether the 

values and data relations collected from the program indicate the occurrence of the vulnerable 

conditions. Graph learning (learning based on graph neural networks (GNN)) can aggregate and 

propagate information in the graph in a similar fashion to DFA. In this chapter, we explore the 

analogy between DFA and the GNN message-passing mechanism and design an embedding 

technique that encodes datafow information at each node of the CFG. Specifcally, we leverage 

the efcient bit-vector representation of datafow facts to encode the defnitions and uses of the 

variables. Graph learning on such an embedding propagates and aggregates datafow information 

and thus simulates the datafow computation as done in DFA. Using this approach, we hope that 

the learned graph representation can better encode program semantic information, e.g., reaching 

defnitions, which will be very useful for accurate vulnerability detection. 

Based on this rationale, we developed an abstract datafow embedding that can map variable 

defnitions of individual programs to a common space so that the model can compare and 

generalize data usage patterns (datafow) related to vulnerabilities across programs. We selected a 

graph learning architecture whose aggregate and update functions worked most efectively for the 

datafow propagation. 

Our evaluation shows that DeepDFA is substantially faster than our baseline models in terms 

of both training and inference time. It only took 9 minutes to train, and inference on a CPU took 

5.8 ms/example. This remarkable efciency permits applications for personalized training and 

inference in non-GPU environments. It is also efcient in its use of training data, achieving its 

best F1 score using only 50+ vulnerable examples and several hundred total examples 
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(Section 3.5.4). This frugality allows applications within a single development team, where it may 

be impractical to collect thousands of vulnerable examples. Yet, DeepDFA still outperformed all 

non-transformer baselines (Section 3.5.3) and retained its performance on unseen projects better 

than all baseline models (Section 3.5.5). Additionally, when applied to a real-world benchmark of 

unseen projects, DbgBench [9], DeepDFA detected 8.7 out of 17 of bugs (averaged over 3 runs) 

and correctly reported 3 out of 5 patched programs as non-vulnerable (Section 3.5.5). In 

comparison, the highest-performing baselines, LineVul [24] and UniXcoder [26], did not detect 

any vulnerabilities. We also show that DeepDFA’s learned representation can be used with other 

models to further improve their performance. By combining UniXcoder with DeepDFA, we 

surpassed state-of-the-art performance with 96.46 F1 score, 97.82 precision, and 95.14 recall. 

In summary, we made the following contributions: 

1. We designed an abstract datafow embedding to enable deep learning to generalize 

semantics/datafow patterns of vulnerabilities across programs (Section 3.4.1); 

2. We applied graph learning on the control fow graph (CFG) of the program and abstract 

datafow embedding to simulate reaching defnition datafow analysis (Section 3.4.2); 

3. We implemented DeepDFA and experimentally demonstrated that DeepDFA outperforms 

baselines in vulnerability detection for efectiveness, efciency, and generalization over 

unseen projects (Section 3.5); 

4. We provided rationale to help understand why DeepDFA performs well and is efcient 

(Section 3.3); and 

5. We surpassed the state-of-the-art vulnerability detection performance by combining 

DeepDFA and UniXcoder (Section 3.5). 

3.2 Overview 

We propose DeepDFA, a deep learning framework guided by datafow analysis algorithms, 

shown in Figure 3.1. Given the source code of a potentially vulnerable program (left), we convert 
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int main(int argc, char **argv)

{
char *str = NULL;
if (argc > 1)
{

str = malloc(10 * argc);
}
str[(10 * argc)-1] = 0;
//...

}

Source code

: str[(10 * argc)-1] = 0

Dataflow analysis-guided 
Graph learning

: char *str = NULL
(definition )

: (char *) str = malloc(10 * argc)
(definition )

TRUE

: if (argc > 0)

: str[(10 * argc)-1] = 0
(definition )

FALSE

CFG + abstract dataflow embedding

: str = malloc(10 * argc): if (argc > 0)

datatype API constant

operator

datatype constant

Figure 3.1: Overview of DeepDFA. 

it to a CFG and encode the nodes using an abstract datafow embedding which we designed. The 

CFG specifes the execution order of statements, and is the data structure on which datafow 

analysis operates. 

In the middle of the fgure, we show our approach of computing abstract datafow 

embeddings. In datafow analysis, defnitions of variables, e.g., a=3, are program specifc. 

Applying to deep learning, we abstract these concrete defnitions from diferent programs, and 

hypothesize that the usage patterns of the abstract defnitions can be compared and summarized 

across programs during learning. To construct the abstract defnitions, we used the properties of 

defnitions that are important for vulnerability detection, based on domain knowledge from 

program analysis. Specifcally, we considered the data types of the defned variable, the API calls, 

constants, and operators used to defne the variables. Inspired by the bit-vector representation 

used in datafow analysis, we encode the abstract defnitions in a compact and very efcient 

fashion. We will provide more detailed design of this embedding in Section 3.4.1. 

We used a bit-vector style of representing a set of abstraction defnitions. This numerical 

representation can be directly used as the initial node representations for graph learning. In the 

right of the fgure, we apply graph learning which aggregates the information from nodes like the 

“merge” operation performed in datafow analysis, and also updates using the information at each 
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nodes like the “update” operation performed in datafow analysis. We provide more background 

on the analogy in Section 3. 

Finally, we use the learned graph representation to classify whether the function is vulnerable 

or not. By directly propagating datafow information through graph learning, we hope to present 

to the classifer a representation of the program which encodes useful information directly related 

to vulnerability, achieving efcient and efective vulnerability detection. The advantage of deep 

learning is that the mapping from the encodings of programs to the decisions are learned from the 

data, but in datafow analysis, we need to manually craft rules to map from the datafow analysis 

results to vulnerability decisions. 

3.3 Rationale 

In this section, we provide the relevant background of datafow analysis for vulnerability 

detection and graph learning. It provides understanding on why our approach is efcient and 

efective. Then, we compared the closely related work that also considers datafow in deep 

learning to clarify the novelty of our work. 

3.3.1 Datafow Analysis for Vulnerability Detection 

Datafow analysis (DFA) is a method for computing data usage patterns in a program. In 

addition to compiler optimization, datafow analysis is an important method for vulnerability 

detection. One instance of datafow analysis, called reaching defnition analysis, reports at which 

program points a particular variable defnition can reach. A defnition reaches a node when there 

is a path in the CFG that connects the defnition and the node, and the variable is not redefned 

along the path. The reaching defnition analysis can detect a null-pointer dereference vulnerability 

based on its root cause when it identifes that a defnition of an NULL pointer reaches a 

dereference of the pointer. Similarly, it is a causal step to detect many other vulnerabilities such 

as bufer overfows, integer overfow, uninitialized variables, double-free and use-after-free [12]. 
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DFA uses two equations to propagate the datafow information through the neighboring nodes 

in the CFG, namely meet operator and transfer function [4]. The meet operator aggregates the 

datafow sets from its neighbors. The transfer function updates the datafow set using the 

information available in the node v. In the reaching defnition analysis, the datafow set is a set of 

defnitions that reach a program point. A simple approach of performing a DFA is the Kildall 

method [33]. It iteratively propagates the datafow information to the neighbors of v in the CFG, 

one step at a time. The algorithm terminates when the datafow information of all nodes stops 

changing, denoted a fxpoint. At termination, all nodes will incorporate the datafow information 

from all other relevant nodes. When used for vulnerability detection, this information is compared 

to a user-specifed vulnerability condition to determine whether a vulnerability has occurred in 

the program. 

3.3.2 Analogy of Graph Learning and Datafow Analysis 

Graph learning starts with an initial node representation, and then it performs a fxed number 

of iterations of the message-passing algorithm [25] to propagate information through the graph. 

The initial node representation is generally a fxed-size continuous vector which represents the 

content of the node. At each iteration, each node aggregates information from its neighbors, and 

then updates its state to integrate the information. The two steps are done through the 

AGGREGATE and UPDATE functions, similar to the two datafow equations of meet operator 

and transfer function. These functions can be simple numerical equations or neural networks. 

After iteration is done, all node representations are combined to produce a graph-level 

representation, which is passed to a classifer layer to make a prediction. 

In Figure 3.4, we visualize the analogy between graph learning and datafow analysis on a 

snippet of CFG. In the CFG, each node is a statement, and each edge indicates the order of 

execution between two statements. In Figure 3.2, we show the two datafow equations [4] that 

defne a reaching defnition datafow analysis. 
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Figure 3.2: Datafow Analysis. Figure 3.3: Graph Learning. 

Figure 3.4: Analogy of information propagation in Datafow Analysis and Graph Learning. 

meet operator: IN [v] = 
[ 

OUT [u] (3.1) 
u∈pred(v) 

transfer function: 
[ 

OUT [v] = GENv (IN [v] − KILLv) (3.2) 

where IN [v] and OUT [v] are the sets of datafow located at the beginning and end of a 

statement. GENv and KILLv represent the datafow generated (new defnitions) and killed 

(overwritten defnition) in node v. Reaching defnition is a may datafow problem and thus the 

meet operator used union to merge the datafow information from its predecessors. Meanwhile, 

reaching defnition is a forward datafow problem, and thus we used IN [v], GENv, and KILLv to 

compute the datafow at the exit of the statement. 

In Figure 3.3, we show an analogous behavior of graph learning. 

tAGGREGATE : a = AGGREGATE({ht−1|u ∈ pred(v)}) (3.3)v u 

tUPDATE : ht = UPDATE(ht−1 , a ) (3.4)v v v 

twhere a denotes the aggregated information from the neighboring nodes and ht denotes thev v 

state of node v after t iterations of message-passing (analogous to OUT [v]). We set t as a 

hyperparameter. 
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3.3.3 The Novelty of Our Work 

Previously, researchers have proposed to integrate datafow information with deep learning for 

program analysis tasks. A category of approaches similar to Devign [56] used data dependency 

graphs as a part of the program representation on which deep learning is performed. However, 

Devign used word embeddings to encode statements into vector representations based on their 

unstructured text content. Such an encoding, even propagated through data dependency edges, 

cannot directly capture the datafow patterns. 

ProGraML [17] has developed graph learning on LLVM IR code and applied it for compiler 

optimization tasks. It is another work that pointed out the analogy between DFA and graph 

learning. Their solution is to modify CFGs by creating instruction nodes and data nodes 

separately. ProGraML adds control-fow edges between instruction nodes and data-fow edges 

between the data nodes. However, this work encoded nodes using an embedding which only 

represents LLVM IR operators and variable types. This approach is very coarse-grained in that 

many statements can have the same operators and variable types, but they will lead to diferent 

datafow. Therefore, similar to Devign, the propagation of such an encoding even along datafow 

edges does not directly capture datafow patterns. 

Our abstract datafow embedding attempts to directly represent the variable defnitions which 

are propagated in DFA and is modeled after the bit-vector representation used in DFA, which 

allows the network to learn the operations of the datafow analysis algorithm. We also target a 

specifc problem (reaching defnitions, which was not targeted by ProGraML), for which the 

results of DFA are directly useful and pertinent to vulnerability detection (e.g. § 4.2). 

3.4 Approach 

Based on the analogous behaviors of DFA and GNN, we designed a node embedding that can 

represent the datafow set at each node. We developed DeepDFA, a deep learning framework 

which conducts graph learning on the CFG of a program and propagates datafow information for 

vulnerability detection. 
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3.4.1 Abstract Datafow Embedding 

In datafow analysis, we use a bit vector to represent the datafow set at each node. A bit 

vector consists of n bits of 0s and 1s. Its length is the size of the domain. A bit is set to 1 if its 

corresponding element is present in the set. In reaching defnition analysis, the domain consists of 

all the defnitions in the program, and the bits are set to “1” if the corresponding defnitions 

reach the node. For example, in Figure 3.1, the program contains three defnitions at nodes v1, v3, 

and v4 so the reaching defnition analysis uses a bit vector [0 0 0] to initialize each node at the 

beginning of the analysis. This bit vector represents OUT [v] in the datafow equations (See 

Section 3.3.2). It is updated at each step of propagation, and when the analysis terminates, the 

bit vectors for each node represent all possible defnitions that can reach that node. 

The bit-vector representation of reaching defnition analysis efciently encodes program 

semantic features related to vulnerability detection. The defnitions of programs can be quickly 

obtained at the node via lightweight analysis locally at the statements. However, in graph 

learning, we cannot directly use the bit vector of defnitions as the node embedding. This is 

because in datafow analysis and the domain of defnitions are both specifc to a program. In 

other words, diferent programs have diferent variable defnitions; the bit vectors of each program 

thus have diferent lengths and the elements (each defnition) are not comparable either. Whereas, 

in graph learning, we want to extract datafow patterns of vulnerabilities from all the programs in 

the training dataset. Thus, we need to have a “global” defnition set that can be used to specify 

defnitions for diferent programs, so that graph learning can compare them and generalize from 

them. 

To address this challenge, we map all the concrete defnitions in the programs in a training 

dataset to abstract defnitions by identifying important properties of the defnitions. Following a 

list of attack surfaces identifed by Moshtari et al. [41], we designed the following four properties 

that can encompass the attack surfaces of a vulnerability and used them to represent a defnition: 

1. API call: the call to library or system functions used to defne a variable, e.g. malloc and 

strlen. 
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Extract properties

datatype

0:   NONE
1:   UNKNOWN
2: int

3: char *

4: double

API

0:   NONE
1:   UNKNOWN
2: malloc

3: getchar

4: getline

constant

0:   NONE
1:   UNKNOWN
2: NULL

3: 0

4: 10

(char *) str = malloc(10 * argc)

operator

0:   NONE
1:   UNKNOWN
2: +

3: -

4: *

Build dictionaries for
the 4 properties

char *foo = NULL;

char *p = "https://...";

int i = 0; str = malloc(10 * argc)

Abstract dataflow embedding

Source code

Abstract dataflow
embedding

0
0

0

0
1
0

0
0
1
0
0

0
0
0
0
1

0
0
0
0
1

1
2
3
4

Index

Figure 3.5: Abstract datafow embedding generation. 

2. Data type: the data type of the variable being assigned, e.g. int, char* and float.

3. Constant: the constant values assigned in the defnition, e.g. NULL, -1 and the hard-coded

string "foo".

4. Operator: the operators used to defne a variable, e.g. +, - and *.

We analyze a large corpus of programs, e.g., the training set, and collect the top-k frequently 

used API calls, data types, constants and operators to construct a dictionary. k is a 

hyperparameter of DeepDFA. We select only the top-k keys because the representations of 

user-defned names of APIs and data types cannot be generalized across programs unless they are 

represented frequently in the dataset. 

In Figure 3.5, we show an example of abstract datafow embedding for an example d2 in 

Figure 1: str = malloc(10 * argc). This defnition used an API call, malloc, with the constant 

10, operator *, and data type char*. Contrasted with the 3-bit bit vector (the example in Figure 

1 includes three variable defnitions) that represents a concrete defnition in datafow analysis for 

this program, the abstract embedding is larger but a fxed size, consisting of 5x4 elements for this 

example. Here, 4 is the four properties we considered and 5 is the hyper-parameter k we 

mentioned above, which defnes the size of the pre-defned dictionary, and the length 5 hot-vector 

encoding represents the value of the property. Because the vector that encodes the abstract 
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datafow embedding has a fxed size, our embedding approach can scale to any program size in 

the dataset without impacting the model’s efciency. The vectors in diferent programs encode 

common properties of defnitions, so the model can capture the datafow patterns across programs. 

Abstraction potentially brings in approximation. Using the abstract datafow embedding, two 

diferent defnitions may lead to the same encoding. The embedding is designed to be sparse 

enough that within a program, unique defnitions are often represented by unique embedding 

keys, which allows the model to distinguish defnitions within the same function, similar to the 

bit-vector used in datafow analysis. 

3.4.2 Using Graph Learning to Propagate Datafow Information 

Our goal in utilizing graph learning is to learn a node embedding that contains datafow 

information. Without loss of generality, we use reaching defnition as an instance of datafow 

analysis for our explanations. Our approach takes the following steps. First, we construct the 

CFG for a program. Second, we perform static analysis to identify all the defnitions in the CFG. 

We then initialize each node of the CFG using the abstract datafow embedding, based on 

whether the node is a defnition or not. The abstract datafow embedding is computed from all 

the programs in the training dataset (see Section 3.4.1 for details). 

Once the nodes are initialized, we apply the message-passing algorithm [25] from graph 

learning to propagate the datafow information throughout the CFG, similar to Kildall’s 

method [33]. The main diferences are that (1) we propagate the abstract datafow embeddings of 

the CFG nodes, and (2) instead of using the datafow equations of transfer function and meet 

operator, we alternatively apply the AGGREGATE and UPDATE functions defned in 

Equations (3.3) and (3.4) (See Section 3.3). Although the analogy applies for all GNN 

architectures trained with message-passing, we implemented our approach using a Gated Graph 

Sequence Neural Network (GGNN) [36], where AGGREGATE is an Multi-Layer Perceptron 
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(MLP) and UPDATE is a Gated Recurrent Unit (GRU); we will use this architecture as an 

example to compare the two algorithms. 

When datafow information arrives at the merge point of a branch in CFG, graph learning 

applies the AGGREGATE function. Specifcally, in GGNN, the MLP calculates a weighted sum 

of the representations of multiple neighboring predecessors, resulting in a single vector; this fulflls 

the same function as the meet operator. When datafow information arrives at a new node, the 

UPDATE function in graph learning computes the next state by combining the information in 

the current node with the output of AGGREGATE from its predecessors. Specifcally, in GGNN, 

the GRU selectively forgets portions of the previous state and integrates new information from 

the current node and from the neighboring states, similar to the set union/diference with 

GEN/KILL performed in the transfer function. Through applying AGGREGATE and UPDATE , 

the initial embedding will be updated with the datafow information from the neighboring nodes, 

similar to the efect of datafow analysis. 

As Cummins et al. [17] noted, DFA iterates to a fxpoint and thus propagates information 

throughout the entire graph, while graph learning performs a fxed number of iterations t and 

thus propagates to neighbors in a distance t. We set t to the setting which maximized 

validation-set performance. 

Finally, we combine the learned abstract node embeddings to produce graph level 

representation using Global Attention Pooling [36], and pass it to a classifer to predict the 

function as vulnerable or non-vulnerable. 

The AGGREGATE and UPDATE functions are learned from labeled data during training, 

rather than using a fxed formula as in datafow analysis. By learning from data, we provide an 

alternative solution to the challenges that often block datafow analysis such as tracking pointers 

and handling library calls. Importantly, we no longer need to explicitly specify vulnerability 

conditions, as required in static analysis. Through learning from training examples, the classifer 

can capture patterns of datafow information that represent various types of vulnerabilities and 

also select the relevant datafow information for vulnerability detection. 
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Table 3.1: OUT [v] at each iteration of DFA. 

Iteration v1 v2 v3 v4 

0 [0 0 0] [0 0 0] [0 0 0] [0 0 0] 

1 [1 0 0] [0 0 0] [0 1 0] [0 0 1] 

2 [1 0 0] [1 0 0] [0 1 0] [0 1 1] 

3 [1 0 0] [1 0 0] [0 1 0] [1 1 1] 

In Table 3.1, we step through a reaching defnition analysis for the CFG example in Figure 4.2 

to demonstrate how datafow information propagates through the graph and how our approach 

uses datafow information for vulnerability detection. 

The row Iteration 0 shows the initialization of each node in the reaching defnition analysis. 

At iteration 1, the DFA updates OUT [v1], OUT [v3] and OUT [v4] using the transfer function to 

indicate that the new defnitions are introduced at the nodes. At iteration 2, OUT [v1] (including 

d1) propagates to v2 and OUT [v3] (including d2) propagates to v4, through the CFG edges. At 

iteration 3, the meet operator is used to combine OUT [v2] and OUT [v3]. Specifcally, S 
IN [v4] = {OUT [v2], OUT [v3]}, computed as [1 0 0] ∨ [0 1 0] = [1 1 0] ; then the transfer function 

combines IN [v4] with GENv4 , resulting in OUT [v4] = [1 1 1] . 

After the DFA algorithm terminates, the fnal states of the nodes are used to detect 

vulnerabilities. The state of v4 is [1 1 1] , which indicates that both d1 and d2 may reach v4 

depending on the program values. Because the defnition d1 : str = NULL can reach the 

dereference at v4, we can conclude that this program has a null-pointer dereference vulnerability. 

Similarly, in graph learning, after a fxed number of iterations, all the node representations are 

combined using a graph readout operation to produce a graph-level representation, which is used 

to predict for vulnerability detection. Programs with the null-pointer dereference bugs will have 

the same abstract defnitions characterized by the char* type and the constant NULL to reach the 

pointer dereference statements. We believe that the datafow information represented by DeepDFA 

will allow a relatively simple classifer to recognize this pattern among the training dataset. 
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3.5 Evaluation 

In the evaluation, we studied 3 research questions: 

1. Is DeepDFA efective for fnding vulnerabilities? 

2. Is DeepDFA efcient, both in terms of training data and computational resources? 

3. Can DeepDFA generalize to unseen projects? 

We also performed ablations on DeepDFA to understand the efects of each feature on its 

performance. 

3.5.1 Implementation 

To explore whether DeepDFA can advance the state-of-the-art, we created two settings, 

DeepDFA and DeepDFA+LLM. We implemented DeepDFA using the GGNN 

architecture [36] and based on LineVD’s implementation1 , using PyTorch and DGL2 . We used 

Joern3 to parse the CFGs because it does not require compilation; this allows our approach to be 

utilized out-of-the-box given only the source code, without extra confguration. To implement 

DeepDFA+LLM, during training and inference, we combine the graph embedding generated by 

DeepDFA’s graph readout stage with the sentence embedding produced by the fnal self-attention 

layer of LLM. The embeddings are concatenated and fed into a feed-forward classifer layer; both 

embeddings and the classifer are trained jointly. We believe that providing datafow information 

can improve the LLM embedding, as LLM is trained exclusively from text and it is hard to learn 

datafow relations among all the dependencies of tokens. 

To avoid data leakage, we extracted the initial abstract datafow embedding from the training 

set only. We set the hyperparameters k and t based on the best validation performance through 

our experimentation. When k = 1000, the model covered most (79.38%) of the defnitions in the 

test dataset. That means, the dictionary still misses some APIs, constants, data types or 

1https://github.com/davidhin/linevd 
2All of our code and data are available at https://doi.org/10.6084/m9.figshare.21225413 
3Joern version 1.1.1072, available at https://joern.io 

https://github.com/davidhin/linevd
https://doi.org/10.6084/m9.figshare.21225413
https://joern.io
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Table 3.2: Hyperparameters used for training DeepDFA. 

Hyperparameter Value 

λ (learning rate) −31e

L2 weight −21e

k (threshold) 1000 
t (number of GNN steps) 5 
Hidden size 32 
# output layers 3 
Batch size 256 

operators that occur in the test data set but are not frequent in the training dataset. To learn a 

more general representation and improve the coverage for test dataset, in future work, we can 

train the abstract datafow embedding using a very large dataset of code, e.g., using 

self-supervised learning without the need of vulnerability labels. 

For reproducibility, Table 3.2 documents the hyperparameters we used for training DeepDFA. 

3.5.2 Experimental setup 

In the recent literature [24, 35, 13], vulnerability detection models are typically evaluated with 

the Devign [56] or Big-Vul [22] datasets, both of which contain real-world open-source C/C++ 

projects. In our evaluation, we used the Big-Vul dataset because (1) it is bigger than Devign, 

consisting of 188,636 functions with 10,900 (6%) vulnerable labels and 177,736 (94%) 

non-vulnerable labels, and (2) it refects the imbalanced distribution of real-world code (Devign is 

a balanced dataset), with the minority of code being labeled as vulnerable [13]. To corroborate 

our results, we also evaluated the models on DbgBench [9], explained further in RQ3. 

Scope: Currently, DeepDFA reports whether a function is vulnerable or not. We can further 

apply deep learning explanation tools to report line level vulnerabilities, as done in the work of Li 

et al. [35]. We leave this evaluation for future work. We evaluated DeepDFA on C/C++ 

programs, as done by the most deep learning-based vulnerability detection tools. However, we 

believe that DeepDFA can also be applied to other popular programming languages, such as 



57 

Python and Java. This is because we extract the abstract datafow embedding (API, datatype, 

literal, operator) from the training dataset, independent of the programming language. 

RQ1: To evaluate the models’ performance, we trained the models on the train/validation/test 

splits of 80/10/10% published by the LineVul paper [24]. To address class imbalance while 

training DeepDFA, we undersampled the majority class (non-vulnerable) following Japkowicz [31]; 

our initial studies found that this improved our performance on the validation set. We kept the 

original ratio of vulnerable/non-vulnerable labels for the validation and test sets. We used 

Joern4 [54] to parse the code into its CFG representation. Joern could not parse some programs 

in the dataset (0.8%; see Section 3.B for details), so we used the remaining data in our 

experiments. The performance of the baseline models was similar to the full dataset (see 

Sections 3.C and 3.F for details). 

We report the following performance metrics: 

TP • Precision reports the portion of positive predictions which were correct: P = TP +FP . 

• Recall calculates the portion of positive examples which were recalled correctly: 

TP R = TP +FN . 

P ∗R• F1 is the harmonic mean between Precision and Recall: F 1 = 2 ∗ P +R . We used F 1 to 

decide the highest performing model because it balances precision and recall, which are both 

important in an imbalanced dataset. 

Since the model performance can vary with diferent random seeds [48], we trained the models 

3 times with diferent random seeds and reported the mean score and standard deviation for each 

metric. We used McNemar’s statistical test, following best practices [18], to confrm that our 

improvement is statistically signifcant, using the implementation in statsmodels v0.14.0 [47]. 

RQ2: To evaluate the models’ efciency in terms of computational resources, we measured the 

runtime and memory usage. These are often contested resources in deep learning workloads [30]. 

We report the following metrics for runtime and memory usage: 

4https://joern.io 

https://joern.io
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• Training time: the wall-clock time to execute one training run with one validation run per 

epoch 

• Inference time: the average wall-clock time to predict for one example. 

• MACs: the average number of Multiply-Accumulate operations5 to predict for one 

example; this measures the performance independently of the computing platform [49, 30]. 

• Parameter count: the number of trainable parameters in the neural network model. 

We evaluated the runtime on an AMD Ryzen 5 1600 3.2 GHz processor with 48GB of RAM 

and an Nvidia 3090 GPU with 24GB of GPU memory. 

To evaluate the models’ efciency in terms of training data, we trained the models on 

progressively smaller subsets which we randomly sampled from Big-Vul (100%, 10%, 1%, 0.5%, 

0.1%, shown in the columns of Table 3.8). Each subset includes the smaller subsets (e.g. 10% 

subset includes the 1% subset and 1% includes 0.5%). We generated 3 versions of the subsets 

using diferent random seeds and reported the mean and standard deviation F1 score. The goal of 

this study is to discover what are the minimum training data needed for these models to perform 

well on the test dataset. 

RQ3: We prepared two experiments for this RQ. In the frst experiment, we created a dataset 

from Big-Vul to evaluate how well the models generalize to unseen projects. This dataset consists 

of the mixed-project and cross-project two settings. To set up the mixed-project setting, we held 

out 10k randomly selected examples for the validation and test sets and used the rest for training, 

similar to the original method of partitioning the dataset. The training set and test set can and 

often do contain examples from the same project, though individual examples will not be 

duplicated between the two sets. To set up the cross-project setting, we held out 10k examples 

from randomly selected projects in Big-Vul for the validation and test sets, and used the rest of 

the projects for training. The projects in the test set are distinct from the projects in the training 

set. To mitigate the potential bias caused by the selection of projects, we repeated this process 5 

5We used DeepSpeed profler to measure MACs [44]. https://www.deepspeed.ai 

https://www.deepspeed.ai
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times with diferent selections of the cross-project data and report the results of 5-fold cross 

validation. 

In order to further evaluate generalization to unseen projects, we applied DeepDFA on buggy 

and patched programs from DbgBench [9]. DbgBench consists of a set of real-world C programs 

with bugs, which were analyzed and fxed by professional software engineers. The DbgBench 

programs are distinct from the programs in the Big-Vul dataset. We labeled the buggy functions 

using the fault locations documented in DbgBench; these were labeled by the consensus of 

multiple developers and were manually checked for correctness, and thus are more reliable than 

Big-Vul’s labeling process based on bug-fxing commits. We included all functions which had a 

bug location marked as “buggy” and their corresponding patched versions in our study. We 

excluded the bugs marked as “Functional” because these bugs cannot be detected without 

program-specifc bug constraints. We only included the patched versions which were modifed by 

the developers’ fxes, taking the frst correct6 developer patch which could be applied to the 

program. We included only one patch to reduce the efects of code duplication, which can unfairly 

bias test performance [5]. Since the models only view the function-level context, they will not 

produce a diferent prediction on the functions which were not modifed by the patch. We also 

excluded 8 examples which could not be processed by Joern in order to fairly compare the 

models’ performance scores. This resulted in a dataset of 22 programs: 17 buggy + 5 patched. We 

evaluated the checkpoints trained from 3 random seeds in Section 3.5.3 and report the mean 

performance scores. 

Ablation study: We ran two ablation settings for each of the four abstract datafow embedding 

features, resulting in eight settings: (1) using one feature at a time and (2) using three features at 

a time (leaving one out). In each setting, we trained DeepDFA on the Big-Vul [22] training 

dataset, and then evaluated on the Big-Vul test dataset and DbgBench [9]. 

Baselines: We compared against 7 non-transformer models: VulDeePecker, SySeVR, Draper, 

Devign, ReVeal, ReGVD, IVDetect, and 4 large language models: CodeBERT, LineVul, 

6Marked in DbgBench as “Developer fx” or “Diferent but Correct Fix”, e.g. https://github.com/dbgbench/ 
dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md 

https://github.com/dbgbench/dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md
https://github.com/dbgbench/dbgbench.github.io/blob/master/patches/find.dbcb10e9/README.md
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Table 3.3: DeepDFA outperformed the baselines and can be used to further improve the existing 
model performance. All scores are reported as Mean (Standard deviation). Note that VulDeePecker, 
SySeVR, Draper, and IVDetect performance were directly taken from the IVDetect paper [35], so 
we do not report the variance. 

Table 3.4: Comparison with non-transformerTable 3.5: Comparison with transformer models. 
models. 

Model F1 Precision Recall Model F1 Precision Recall 

VulDeePecker 12.00 49.00 19.00 CodeBERT 21.04 68.48 12.91 
(6.72) (11.76) (5.51)SySeVR 15.00 74.00 27.00 

CodeT5 45.61 56.47 38.56Draper 16.00 48.00 24.00 
(0.71) (6.22) (2.45) 

ReGVD 19.15 63.67 11.33 
LineVul 93.23 97.32 89.48(2.65) (4.43) (1.94) 

(0.31) (0.66) (0.42) 
IVDetect 23.00 72.00 35.00 

UniXcoder 95.11 96.96 93.34 
Devign 26.85 29.00 25.03 (0.21) (1.14) (1.23) 

(0.97) (0.38) (1.67) 
DeepDFA 68.26 53.98 92.81 

ReVeal 32.94 34.27 31.73 (0.16) (0.06) (0.40) 
(0.75) (1.58) (0.65) 

DeepDFA 81.39 94.23 71.67 
DeepDFA 68.26 53.98 92.81 +CodeT5 (0.96) (2.98) (1.09) 

(0.16) (0.06) (0.40) 
DeepDFA 96.40 98.69 94.22 
+LineVul (0.13) (0.28) (0.46) 

DeepDFA 96.46 97.82 95.14 
+UniXcoder (0.09) (0.99) (1.09) 

UniXcoder, and CodeT5 7 . These models were developed recently with diverse architectures, and 

they represent the state-of-the-art of vulnerability detection models [48]. See Section 3.7 for an 

overview of the models and Section 3.A in the supplementary materials for the details of our 

reproductions. 
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3.5.3 Efectiveness 

Comparison with non-transformer models: In Table 3.4, we show that DeepDFA performed 

much better than the baseline models on F1 score and recall. DeepDFA’s score was 47.51 higher 

than the average F1 score computed over all the baselines. In addition, compared to the other 6 

models, DeepDFA reported lower variances for all the three metrics. This indicates that DeepDFA 

was more robust to random noise throughout training, and thus more likely to perform as 

expected after training. 

The results show that our abstract datafow embedding indeed encodes useful information for 

vulnerability detection, despite the fact that the node representation is small and the graph is 

simple. It is more efective than property graphs (a combination of AST, CFG, and PDG) used in 

Devign and Reveal. These baseline models represented nodes using unsupervised word 

embeddings [40, 34, 43], which do not have a direct relationship with vulnerabilities. In contrast, 

DeepDFA’s node representation encodes the datafow sets of reaching defnitions, related to the 

root causes of vulnerabilities. 

Comparison with transformer models: We compared DeepDFA with CodeBERT, LineVul, 

UniXcoder, and CodeT5 – the state-of-the-art among the transformer language models we 

evaluated. (see Section 3.C for the performances of all the baseline models). Table 3.5 shows that 

DeepDFA performed considerably better than CodeBERT and CodeT5 in F1 score and had the 

smallest variance (among all the models) between runs. 

Although UniXcoder and LineVul performed better than DeepDFA in terms of F1 score, 

DeepDFA’s embedding can be combined with UniXcoder and LineVul to further improve their 

performance. We achieved state-of-the-art performance on all three metrics by adding DeepDFA’s 

embedding to UniXcoder, with an F1 score of 96.46 (1.35 improvement), a Precision score of 

97.82 (0.86 improvement), and a Recall score of 95.14 (1.80 improvement). Adding DeepDFA’s 

embedding improved CodeT5 considerably – by 35.78 F1 score – and improved LineVul by 3.17 

7We could not reproduce LineVD and ContraFlow on Big-Vul for function-level vulnerability detection. 
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Table 3.6: Results of statistical tests for model comparison. 

Models compared χ2 statistic p-value 

LineVul vs. DeepDFA+LineVul 20.0 2.77 × 10−7 

UniXcoder vs. DeepDFA+UniXcoder 25.0 5.35 × 10−4 

F1 score. We used McNemar’s signifcance test, as recommended by Dietterich [18], to confrm 

that the diferences in performance were statistically signifcant (p < 0.05; see Table 3.6). 

DeepDFA does not use any text-/token-level information such as variable and function names, 

yet it has achieved excellent performance. We believe that leveraging the domain-specifc 

algorithm of reaching defnition analysis to guide graph learning indeed plays an important role 

and that the embedding indeed encodes semantic features (e.g., data relations) that are important 

for vulnerability detection. The fact that DeepDFA can further improve the top-performing LLMs 

indicates that LLMs, which exclusively leverage text information, may not sufciently learn the 

datafow of code; DeepDFA thus provides the complementary information for vulnerability 

detection. We further believe that the examples which DeepDFA predicted incorrectly could be 

attributed to the fact that reaching defnition analysis cannot handle all types of vulnerabilities. 

Thus, by adding other datafow analyses such as live variable analysis, DeepDFA could further 

improve its performance. We will leave such an investigation to our future work. 

RQ1 result: DeepDFA performed much better than all non-transformer baselines. When 

combined with transformer models, it achieved the highest SOTA score on all metrics. 

3.5.4 Efciency 

Efciency of computational resources: In Table 3.7, we present the runtime comparison of 

DeepDFA, LineVul, and UniXcoder. Here, we did not list other models because their 

performances are much worse (shown in Table 3.3), and they took hours to train (see Section 3.D 

in the supplementary material), compared to DeepDFA which fnished training in 9 minutes 
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Table 3.7: Training and inference time of DeepDFA and baselines. DeepDFA’s training/inference 
time was faster than the baselines. 

Inference cost per example 

Model Train time (ms) GPU (ms) CPU (ms) MACs 

LineVul 10h19m 11.1 1068.2 48.32 B 
DDFA+LV 10h40m 15.4 1571.5 48.32 B 
UniXcoder 11h16m 9.5 486.0 48.32 B 
DDFA+UXC 13h22m 13.3 922.1 48.32 B 
DeepDFA 9m 4.6 5.8 40.27 M 

(excluding data preprocessing time). In Section 3.E, we also listed the sizes of the models in terms 

of the number of parameters. 

Compared to UniXcoder, DeepDFA took 75x less time to train, 2x faster inference on GPU, 

and 84x faster inference on CPU. DeepDFA had the least parameters of all models, equal to 67% 

of the smallest model (ReVeal) and 0.3% of the highest-performing baseline model (UniXcoder). 

These results consistently indicate that DeepDFA excels in its efciency compared to other 

models. This is possible because DeepDFA is based on the datafow analysis’s compact 

representation – bitvector, which captures the relevant semantic information in bits and thus is 

more efcient compared to tokenized strings. DeepDFA propagated information along only the 

domain-specifc CFG edges, rather than associating every pair of tokens in an exhaustive fashion. 

DeepDFA’s short inference time due to a low number of MAC operations enables its use in 

non-GPU environments (which are common for software development) where large language 

models may not be easily deployed. DeepDFA’s short training time enables techniques like 

per-project fne-tuning and hyperparameter tuning, which would be much more costly with the 

LLMs’ training times of over 10 hours. Because of DeepDFA’s small parameter count, it is ideal 

for resource-limited computing platforms such as mobile devices, where large models cannot be 

used [30]. 

Efciency on training data: In Table 3.8, we report the performance of DeepDFA over reduced 

training dataset sizes, compared to the SOTA models, LineVul and UniXcoder. The columns “# 
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Table 3.8: Performance of DeepDFA and baselines on limited data. DeepDFA retained its perfor-
mance on limited data. 

F1 

Portion # data # vul LineVul UniXcoder DeepDFA 

0.1% 151 11 29.75 4.36 55.24 
0.5% 755 56 77.69 79.37 68.17 
1.0% 
10.0% 
100.0% 

1,510 
15,091 
150,908 

90 
885 

8,736 

84.62 
86.67 
93.23 

79.60 
92.53 
95.11 

68.40 
68.44 
68.26 

data” and “# vul” list the number of training examples in each subset and, of these, the number 

of vulnerable examples. The results show that DeepDFA maintained a stable performance across 

small dataset sizes, even with only 0.1% of the training dataset, using only 151 training examples. 

In contrast, LineVul and UniXcoder steadily dropped in performance as the size of the training 

dataset decreased. At 0.1% data, LineVul’s mean performance was only 29.75 in F1 and 

UniXcoder’s was 4.36. 

For project-specifc training in applications within a single development team, a model which 

can learn efciently from a small dataset is useful. 

We believe that our model’s stable performance over the reduced dataset and good 

performance with very small training datasets demonstrate the advantage of the small models and 

the efectiveness of domain-specifc algorithms to guide model learning. DeepDFA is less prone to 

overftting to datasets of limited size since it has fewer parameters than LineVul [8]. On the other 

hand, the transformer models require a large corpus of programs to learn the patterns among the 

unstructured token data. 

RQ2 result: DeepDFA was considerably faster than the baselines; it took 9 minutes to train, 

4.64 milliseconds for inference on GPU, and 5.8 milliseconds for inference on CPU. DeepDFA 

retained stable performance as the training dataset size was reduced. In a low-data scenario, 

DeepDFA outperformed LineVul and UniXcoder by 25.49 and 50.88 points F1 score. 
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Table 3.9: How do the models handle unseen projects? Note the performance drop (∆F1) from the 
cross-project to mixed-project setting. 

Model Mixed F1 Cross F1 ∆F1 

LineVul 84.03 71.37 -12.66 
UniXcoder 86.30 76.72 -9.58 
DeepDFA 70.49 68.58 -1.91 
DeepDFA+LineVul 87.89 71.88 -16.02 
DeepDFA+UniXcoder 89.85 78.07 -11.77 

3.5.5 Generalization 

Cross-project evaluation on Big-Vul: We compared the models’ F1 scores on the 

cross-project (shown as Cross F1) and mixed-project (shown as Mixed F1) settings to evaluate the 

models’ capabilities of generalizing over unseen projects. Table 3.9 presents the 

highest-performing baseline models, LineVul and UniXcoder, compared to DeepDFA (the results 

of the other baseline models are available in the supplementary material, Section 3.F). Among the 

most important metrics, ∆F1 shows how performance changes when the model is applied to 

unseen projects. Shown under Column ∆F1, DeepDFA only dropped 1.91 (2.7%) F1 score, 

compared to 12.66 (15.1%) drop for LineVul and 9.58 (11.1%) drop for UniXcoder. 

DeepDFA+UniXcoder reported the best performance for both the mixed-project and 

cross-project settings, improving on UniXcoder’s mean F1 score by 3.55 and 1.35 points 

respectively; DeepDFA+LineVul also improved LineVul’s F1 score in both settings. 

Applying to DbgBench: In Table 3.10, we report our experience of applying deep learning 

tools to real-world bug benchmarks. DeepDFA detected 8.7 out of 17 total bugs on average across 

3 runs. DeepDFA also correctly predicted non-vulnerable for 3 out of 5 patched programs. On the 

other hand, neither of the competing LLMs, LineVul and UniXcoder, detected any bugs and in 

fact both models reported all programs as non-vulnerable with high confdence. This implies that 

these models were heavily biased to predict all examples in DbgBench as non-vulnerable. With 

the addition of DeepDFA, DeepDFA+LineVul and DeepDFA+UniXcoder’s generalization greatly 

improved, yet they did not perform as well overall as DeepDFA alone. It should be noted that the 
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Table 3.10: Generalization performance of DeepDFA and baselines. DeepDFA generalized to real-
world bugs in DbgBench. Results are averaged over checkpoints from 3 random seeds. Buggy/-
Patched columns show the number of correct predictions on buggy/patched programs respectively. 

Model Buggy Patched Accuracy F1 

LineVul 0.0 5.0 22.73 0.00 
DeepDFA+LineVul 9.0 1.3 46.97 60.67 
UniXcoder 0.0 5.0 22.73 0.00 
DeepDFA+UniXcoder 9.0 1.3 46.97 60.67 
DeepDFA 8.7 3.0 53.03 64.29 

Total 17.0 5.0 - -

bugs in DbgBench are very complex and took human experts hours to diagnose [9]. In the past, 

we have tried a variety of static analysis tools, such as Cppcheck8 and Polyspace9 , to detect bugs 

in DbgBench, but we have not detected any of these bugs. 

We believe that DeepDFA generalizes better because it does not rely on spurious features that 

may exist at token and text level, such as variable names and function names, as reported by 

previous research [13]. These spurious features are no longer correlated with vulnerabilities in 

unseen projects, as their input tokens will likely change. Our abstract datafow embedding 

encodes the usage patterns of commonly used API calls, operators, constants, and data types. 

Such patterns can be extracted from unseen text and are directly related to the cause of the 

vulnerabilities, and thus might help DeepDFA generalize better over unseen projects. 

RQ3 result: DeepDFA had the smallest drop in F1 score (∆ F1) when applying to the 

vulnerabilities in the projects that are not seen in training datasets. DeepDFA was able 

to detect complex bugs in DbgBench and was able to distinguish the buggy and patched 

versions. The SOTA models, LineVul and UniXcoder, did not detect any bugs in DbgBench. 
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Table 3.11: Ablation study evaluated on DbgBench. 

Feature set Buggy Patched Acc F1 

DeepDFA 8.7 3.0 53.03 64.29 

API only 7.7 3.0 48.48 57.50 
Datatype only 8.0 3.0 50.00 59.26 
Literal only 7.7 3.0 48.48 57.50 
Operator only 7.7 3.0 48.48 57.50 

Api+datatype+literal 8.0 3.0 50.00 59.26 
Api+datatype+operator 8.0 3.0 50.00 59.26 
Api+literal+operator 8.0 3.0 50.00 59.26 
Datatype+literal+operator 8.0 3.0 50.00 59.26 

Total 17.0 5.0 - -

3.5.6 Ablation studies 

Table 3.11 shows the model’s performance on DbgBench. The model detected the most bugs 

when using all four features compared to other ablation settings. When using only one feature at 

a time, the model consistently missed 1-2 bugs which were detected by DeepDFA. When using 

three features at a time (leaving one out), the model still consistently failed to detect 1 bug which 

was detected by DeepDFA. 

Table 3.12 shows the model’s performance on the Big-Vul test dataset. DeepDFA (integrating 

all the four features) performed the best out of all confgurations. When testing one feature at a 

time, datatype by itself performed better than the other 3 features alone. When we used the 

combined feature sets, the model performed better than using only one feature. 

3.6 Threats to Validity and Discussions 

Threats: We evaluated performance primarily on the Big-Vul dataset because this dataset was 

supported by all the baseline models. Compared to the Devign dataset, Big-Vul is imbalanced and 

can better refect a real-world vulnerability detection scenario. However, Big-Vul’s data collection 

8https://cppcheck.sourceforge.io/ 
9https://www.mathworks.com/products/polyspace.html 

https://cppcheck.sourceforge.io/
https://www.mathworks.com/products/polyspace.html
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Table 3.12: Ablation study evaluated on the Big-Vul test dataset. 

Feature set F1 Precision Recall 

DeepDFA 68.26 
(0.16) 

53.98 
(0.06) 

92.81 
(0.40) 

Datatype only 68.04 
(0.19) 

53.83 
(0.31) 

92.46 
(0.30) 

Literal only 62.50 
(0.81) 

50.52 
(1.83) 

82.46 
(7.26) 

Operator only 64.47 
(0.33) 

52.82 
(1.59) 

82.98 
(4.90) 

API only 63.67 
(0.45) 

50.66 
(2.36) 

86.14 
(5.58) 

API + datatype + literal 68.18 
(0.10) 

54.06 
(0.13) 

92.28 
(0.15) 

API + datatype + operator 68.16 
(0.13) 

54.03 
(0.18) 

92.28 
(0.15) 

API + literal + operator 68.11 
(0.14) 

53.98 
(0.20) 

92.28 
(0.15) 

Datatype + literal + operator 68.12 
(0.20) 

54.04 
(0.11) 

92.11 
(0.46) 

process based on bug-fxing commits can introduce label noise and selection bias and as a result, 

the evaluation could fail to represent real-world performance. To address the selection bias, we 

studied settings which refect more realistic scenarios with reduced training datasets and 

cross-project generalization; to address the label noise, we evaluated the models on additional 

real-world bugs collected in DbgBench, which were labeled by developers and manually checked. 

The performances reported in RQ1, RQ2, and RQ3 will be afected by the random noise in 

the model training and, for RQ2, dataset selection. To mitigate this efect, we generated 3 

versions of the subsets using diferent random seeds and reported the mean performance. 
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The mixed-project and cross-project performance reported in RQ3 will be afected by the 

random selection of projects in the training/held-out datasets. To mitigate this efect, we 

performed 5-fold cross-validation and reported the mean performance. 

Discussions: We believe our approach can be extended to bit-vector datafow problems [29, 45]. 

All problems in this category contain a fnite set of datafow facts and have the same form of 

transfer functions and meet operators (see Equations (3.1) and (3.2)). For example, live variables 

and available expressions [45] are bit-vector problems that are important for vulnerability 

detection [12]. We believe a new datafow analysis can be integrated by: (1) defning an abstract 

datafow embedding which can capture the datafow set of the analysis, (2) confguring the neural 

network used as the aggregate function in GGNN to better simulate the meet operator (based on 

whether it is a union or intersection operation), and (3) reversing the CFG edges for backward 

datafow problems (as reaching defnition is a forward datafow problem). 

3.7 Related Work 

Many works have used GNN for vulnerability detection [6, 51, 19, 21, 14, 10, 42]. In several 

recent approaches, Devign [56], ReVeal [13], IVDetect [35], and LineVD [28] used GNN on 

program graph representations such as AST, CFG, and PDG, and annotated the nodes with 

unsupervised or pretrained word embeddings. The novelty of our work is a bit-vector inspired 

abstract datafow embedding based on the analogy of graph learning and DFA algorithms. 

Transformer models such as CodeBERT [23], LineVul [24], and UniXcoder [26] used a 

token-based program representation pretrained on a large body of NL-PL pairs, and then 

fne-tuned for vulnerability detection. Using CFGs, our graph learning only propagates the 

information along semantically important edges instead of trying to learn the relations of each 

pair of tokens. Thus, our approach is substantially more efcient. Since we have used a 

semantic-based embedding, we show that we can improve the performance of token based models. 

The most recent work, ContraFlow [15], learns embeddings of def-use paths (an output of 
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datafow analysis), then predicts vulnerability detection using a transformer model. Our work 

directly emulates datafow analysis and does not require an expensive pretraining phase. 

There were also models that used sequence and CNN architectures. VulDeePecker [38] used 

BiLSTM on slices considering data dependencies. SySeVR [37] used BiGRU on slices and adds 

data dependencies. Draper [46] used CNN and Random Forest. However, none of these models 

integrates datafow analysis in its algorithm. 

Cummins et al. [17] formulated datafow analyses as supervised learning tasks and applied it 

for device mapping and algorithm classifcation; we discuss the diferences from our work in-depth 

in Section 3.3.3. Other relevant work that explores datafow analysis and deep learning include: 

(1) VenkataKeerthy et al. [50] used the output of datafow analysis, reaching defnitions and live 

variables, to learn fow-aware embeddings; and (2) Bielik et al. [7] and Jeon et al. [32] learned 

static analysis formulas from a dataset based on a fxed language. None of these works aims to 

develop a model for vulnerability detection. 

3.8 Conclusions and Future Work 

We propose DeepDFA, an efcient graph learning framework and embedding technique for 

vulnerability detection. Our abstract datafow embedding leverages the idea of bit-vector in 

datafow analysis and integrates data usage patterns from semantic features: commonly used API 

calls, operations, constants, and data types that potentially capture the causes of the 

vulnerabilities. DeepDFA emulates the Kildall method of datafow analysis using the analogous 

message-passing algorithm. Our experimental results show that DeepDFA is very efcient. It is 

trained in 9 minutes and used only 50 vulnerable examples to achieve its top performance. Yet, it 

still outperformed all non-transformer baselines and generalized the best among all the models. 

DeepDFA found bugs in real-world programs from DbgBench while neither of the 

highest-performing baselines, LineVul and UniXcoder, detected any bugs. Importantly, DeepDFA 

can be used to improve other models. By combining DeepDFA with the top performing models, 

we surpassed the state-of-the-art performance for vulnerability detection. 
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In the future, we plan to incorporate other datafow analyses, e.g., live variable analysis, that 

have been used for or vulnerability detection [12]. We also plan to explore the application of 

explanation tools to precisely pinpoint the vulnerability location at specifc lines in the code, and 

evaluate our framework on detecting vulnerabilities in other programming languages. 
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3.A Appendix: Baseline reproductions 

• We could not reproduce VulDeePecker, SySeVR, Draper, or IVDetect, so we repeated the 

performances reported in Li et al. [35]. Their measurements may vary slightly from our 

reproduction. 

• We confrmed with Chakraborthy et al. [13] that our results fxed a data leakage bug in the 

original implementation, so the results we report may difer from the original paper. 

• Zhou et al. [56] did not release their model code, so we reproduced Devign from the 

third-party implementation released by Chakraborthy et al. [13] 

(https://github.com/saikat107/Devign). 

• Hin et al. [28] did not report function-level metrics for LineVD, and we could not reproduce 

their statement-level performance from their model code, so we did not compare with their 

approach. 

• Cheng et al. [15] did not release their model code and evaluated a diferent dataset than 

ours, so we did not compare with their approach. 

3.B Appendix: Programs that are removed 

We excluded a total of 1,564 programs (0.8%) of the Big-Vul dataset, following the 

implementation of LineVD10 . Specifcally, the following programs are removed: 

• Incomplete functions, i.e., ending with ‘);’, or not ending in ‘}’ or no ‘;’. Joern can fail to 

parse such functions. 

• Programs where no lines were added or removed, but the function was labeled vulnerable. 

• Vulnerable programs where more than 70% of the lines are modifed from the vulnerable to 

the fxed version, indicating that a substantial change has been done and the vulnerability 

may be changed. 
10https://github.com/davidhin/linevd 

https://github.com/saikat107/Devign
https://github.com/davidhin/linevd
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• Programs that are fewer than 5 lines long. 

3.C Appendix: Additional efectiveness results 

Of the transformer models, we evaluated CodeBERT and LineVul in our experiment for 

Section 3.5.3. Table 3.13 reports the performances of the other models. 

Table 3.13: Initial trial run of performance on 100% of the Big-Vul dataset. 

Model Model type F1 Precision Recall 

Devign GNN 
29.33 
(6.58) 

32.83 
(5.55) 

26.59 
(7.25) 

ReVeal GNN 
33.60 
(0.69) 

33.08 
(3.49) 

34.67 
(3.80) 

ReGVD GNN 
24.49 
(3.16) 

63.76 
(3.54) 

15.26 
(2.71) 

CodeBERT Transformer 
22.68 
(8.12) 

67.79 
(4.90) 

19.11 
(3.39) 

LineVul Transformer 
91.58 
(0.49) 

95.99 
(0.85) 

87.55 
(0.49) 

VulBERTaMLP [27] Transformer 
1.75 
(3.03) 

19.33 
(33.49) 

0.92 
(1.59) 

VulBERTaCNN [27] Transformer 
10.59 
(0.00) 

5.59 
(0.00) 

100.00 
(0.00) 

PLBART [3] Transformer 
25.35 
(3.74) 

61.84 
(6.54) 

16.18 
(3.52) 

3.D Appendix: Training times of all models 

Table 3.14 lists the training times of the lower-performing models which we did not report in 

Section 3.5.4. These training runs were not performed in the same environment as those in 

Section 3.5.4, but they provide an approximate measurement of the training time. We were not 

able to reproduce IVDetect, so we do not report its training time. 
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Table 3.14: Approximate training times of all models. 

Model Training time 

Devign 2h58m 
ReVeal 13h20m 
ReGVD 5h33m 
CodeBERT 7h33m 
LineVul 10h19m 
DeepDFA+LineVul 10h40m 
UniXcoder 11h16m 
DeepDFA+UniXcoder 13h22m 
CodeT5 27h40m 
DeepDFA+CodeT5 27h57m 
DeepDFA 9m 

3.E Appendix: Model sizes 

Table 3.15 lists the size of each model. 

Table 3.15: DeepDFA was smallest in terms of parameter count. 

Model # parameters 

IVDetect 924,165 
Devign 1,148,553 
ReVeal 560,291 
ReGVD 124,794,500 
CodeBERT 124,646,401 
LineVul 125,238,531 
DeepDFA+LineVul 125,679,236 
UniXcoder 126,522,627 
DeepDFA+UniXcoder 126,963,332 
CodeT5 222,883,586 
DeepDFA+CodeT5 223,128,195 
DeepDFA 375,938 
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3.F Appendix: Additional cross-project evaluation results 

We only evaluated LineVul in our experiment for Section 3.5.5 because its absolute 

performance was substantially better than the other baseline models in our initial trial. Table 3.16 

reports the results of our initial trial. 

Table 3.16: Initial trial run of cross-project evaluation with 100% of the dataset. 

Model Mixed-project F1 Cross-project F1 ∆F1 

LineVul 84.07 71.81 -12.26 
Devign 
ReVeal 

24.32 
28.24 

14.26 
6.83 

-10.06 
-21.41 

ReGVD 33.61 21.70 -11.91 
CodeBERT 24.14 4.98 -19.16 
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CHAPTER 4. TRACED: EXECUTION-AWARE PRE-TRAINING FOR 

SOURCE CODE 

Yangruibo Ding1 , Benjamin Steenhoek2 , Kexin Pei3 , Gail Kaiser4 , Wei Le5 , and Baishakhi Ray6 

1,3,4,6 Department of Computer Science, Columbia University, New York, NY, 10027 

2,5 Department of Computer Science, Iowa State University, Ames, IA, 50011 

Modifed from a manuscript published in the 46th International Conference on Software 

Engineering (ICSE 2024) 

Abstract 

Most existing pre-trained language models for source code focus on learning the static code 

text, typically augmented with static code structures (abstract syntax tree, dependency graphs, 

etc.). However, program semantics will not be fully exposed before the real execution. Without an 

understanding of the program execution, statically pre-trained models fail to comprehensively 

capture the dynamic code properties, such as the branch coverage and the runtime variable 

values, and they are consequently less efective at code understanding tasks, such as retrieving 

semantic clones and detecting software vulnerabilities. 

To close the gap between the static nature of language models and the dynamic 

characteristics of programs, we introduce TRACED, an execution-aware pre-training strategy for 

source code. Specifcally, we pre-train code language models with a combination of source code, 

executable inputs, and corresponding execution traces. Our goal is to teach code models the 

complicated execution logic during the pre-training, enabling the model to statically estimate the 

dynamic code properties without repeatedly executing code during task-specifc fne-tuning. 

∗ Benjamin led data collection of over 100k execution traces; Yangruibo led model design/evaluation. 
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To illustrate the efectiveness of our proposed approach, we fne-tune and evaluate TRACED 

on three downstream tasks: static execution estimation, clone retrieval, and vulnerability 

detection. The empirical results show that TRACED relatively improves the statically pre-trained 

code models by 12.4% for complete execution path prediction and by 25.2% for runtime variable 

value predictions. TRACED also signifcantly outperforms statically pre-trained models in clone 

retrieval and vulnerability detection across four public benchmarks. Our data, code, and 

pre-trained models are available at https://doi.org/10.6084/m9.figshare.27367989. 

4.1 Introduction 

Machine Learning (ML) for source code has enabled many software engineering tasks, such as 

automated program repair [12, 20, 18, 19], bug fnding [8, 56], and refactoring [7]. Recently, the 

common practice of training ML models for source code understanding is based on pre-training a 

Transformer-based language model on source code. These approaches treat source code programs 

as static text [13, 6, 1, 48], sometimes augmented with program-specifc structures such as 

abstract syntax trees and dependency graphs [15, 14, 11, 33], and adapt pre-training strategies for 

natural language to learn program representations. 

However, many source code understanding tasks require a more comprehensive understanding 

of program behavior. For instance, detecting semantic clones [30] involves determining if two 

pieces of code behave similarly under similar inputs, even if their structures are apparently 

diferent. Likewise, detecting vulnerabilities often requires developers to analyze whether a 

potentially problematic location can be executed and what kinds of value fows can expose any 

vulnerability. While existing code models are primarily trained to capture static code properties, 

they are not efective at reasoning about program behavior. In fact, many of the deeper program 

semantics only manifest when the code is executed. As a result, they tend to underperform when 

it comes to tasks that require deeper semantic understanding. 

https://doi.org/10.6084/m9.figshare.27367989
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Figure 4.1: A motivating example from CodeNet’s coding challenge No.3597 [40] reveals that stati-
cally pre-trained code language models, regardless of their size, could not reason about the branch 
coverage given a specifc input, while TRACED, enhanced with program execution features, cor-
rectly identify the execution path. 

Motivating Examples. Figure 4.1 presents an example with simple execution logic to 

illustrate the failure of statically pre-trained code models on the branch coverage prediction. We 

query three pre-trained code models, CodeX [9] (code-davinci-002), UnixCoder [14], and 

TRACED (ours), to predict the branch coverage, according to the given program inputs. For 

CodeX, we prompt the model with carefully designed questions, similar to [34], to ask for the 

branch coverage prediction in the zero-shot setting. Specifcally, we augment the prompts by 

adding comments at the end of lines 12 and 16: // Will this line be executed? Yes or no?. 

To give more hints regarding the data fow, we further add a comment at the end of line 10: // A 

is -1, since it accepts the second value of the input. Unfortunately, even if provided 

with additional hints of the required data fow for branch prediction, CodeX still failed to predict 

the correct coverage labels, suggesting it cannot interpret this simple execution. 

Besides the zero-shot prompting, we also study whether fne-tuning pre-trained code models 

to predict execution can lead to better branch prediction. Specifcally, we fne-tune another 

popular pre-trained code model, UnixCoder [14], to predict branch execution while ensuring the 

motivation example is not seen during training. From the inference results in Figure 4.1, we notice 
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that UnixCoder cannot predict covered branches even after being fne-tuned. It predicts neither of 

the branches will be covered, indicating that it does not have the basic understanding that, for 

this specifc example, at least one branch will always be taken on a valid input. 

Our approach. To address the limitation of the statically pre-trained code models, we 

propose TRACED, an execution-aware pre-training strategy to capture the static and dynamic 

perspectives of the source code. Specifcally, we pre-train the Transformer-based language model 

with multi-task objectives on predicting source code, program states, and execution coverage, 

forcing the model to reason about both program’s runtime behavior and the naturalness of the 

source code [42] at the same time. We address several technical challenges, such as representing 

program execution states, encoding the runtime variable values, and representing code coverage, 

to implement the pre-training strategy. 

Representing Program States. During program execution, variables are used to store 

data that is used by the program. These variables can have diferent types, such as integers, 

foating-point numbers, pointers, and arrays. As the program executes, the values of these 

variables change, refecting the changes in the program’s state. Consequently, software developers 

typically monitor the variable values, via debugging tools, to observe the execution facts [54] and 

understand the dynamic behaviors of the program. 

In this work, we defne the program state at a specifc time step of the execution as the set of 

values of every defned variable in the current scope. In other words, the program state is 

equivalent to the value mapping table of the debugger, which is monitored by the developer when 

the program is paused by a specifc breakpoint. 

Value Quantization. While the runtime variable values are traced as concrete values, 

directly learning them brought challenges to machine learning models. Concrete values span over 

a wide range of possible values, especially when considering diferent data types (integers, 

foating-point numbers, arrays, pointers, etc.), leading to a high-dimensional, complex, but sparse 
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data distribution. This increased data complexity and sparsity challenges the model to learn 

patterns and relationships between the variable values, as it must deal with many unique inputs, 

which causes the model to overft and memorize specifc instances rather than generalize to 

broader patterns. Additionally, noise, outliers, and irregularities of concrete values also mislead 

the model’s learning process. We will empirically demonstrate these limitations in Section 4.6.3. 

To decrease the data complexity and increase the density, we defne thirty value categories, 

covering a wide range of variable types, to map the continuous but sparse variable values into 

discrete bins. We call this process as value quantization, which is similar in design to the 

quantization in signal processing1 . This simplifcation potentially helps the model to be more 

resilient to noise and outliers, allowing it to focus on learning the underlying execution patterns 

and relationships between variables, rather than being sensitive to specifc instances or 

irregularities. 

Representing Execution Coverage. While program state labels provide important 

information about the current state of the program, they do not capture information about how 

the program arrived at that state. To boost the training with more comprehensive execution 

features, besides the variable values, we also log the execution coverage during the execution, in 

terms of which lines are executed and which are not, and construct execution coverage features 

for the model to learn. 

Results. We fne-tune and evaluate TRACED’s performance using three tasks: static 

execution estimation, clone retrieval, and vulnerability detection. On statically predicting the 

program executions, TRACED substantially improves the statically pre-trained code models by 

12.4% for execution path prediction and by 25.2% for runtime variable value predictions. 

TRACED also obtains state-of-the-art results in code understanding tasks: TRACED reports 

91.2% MAP@R on CodeXGLUE-POJ104 [30], 50.4% F1 on ReVeal [8], and 65.9% accuracy on 

CodeXGLUE-defect-detection [30]. 

1https://en.wikipedia.org/wiki/Quantization_(signal_processing) 

https://en.wikipedia.org/wiki/Quantization_(signal_processing)
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Contributions. We make the following contributions: 

• We present a simplifed and compact representation of program executions, including the 

program states and the execution coverage, to efectively guide code models to learn 

program semantics and reason about program behavior. 

• We propose a novel multi-task pre-training strategy to jointly learn the static and dynamic 

code properties. As a result, the pre-trained model with our approach will be empowered 

with a decent execution awareness. 

• We pre-train TRACED with the proposed trace representation and the execution-aware 

strategy and evaluate its performance on several downstream tasks. The experiment results 

demonstrate that TRACED signifcantly outperforms the statically pre-trained code 

models in these tasks. 

• We publicly released our data, code, and pre-trained models at 

https://doi.org/10.6084/m9.figshare.27367989. 

4.2 Overview 

Figure 4.2 shows the overview of TRACED, consisting of three main stages: (1) tracing the 

source code and engineering the features, (2) execution-aware pre-training using the program 

traces, and (3) loading the pre-trained weights and performing task-specifc fne-tuning. 

Stage-1: Tracing & Feature Engineering. The goal of this stage is to prepare the data 

for pre-training. The process begins with providing a source program and its executable inputs. 

The frst step is to execute the program with each input to generate corresponding traces. The 

traces record the runtime variable values, together with the execution coverage, logging the full 

execution history of the program and revealing the changes to program states throughout 

execution. To reduce the complexity and sparsity of the data, and make it easier for the model to 

learn patterns and relationships between the variable values, we quantize the concrete runtime 

https://doi.org/10.6084/m9.figshare.27367989
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Figure 4.2: Overview of the workfow of TRACED. 

values recorded in the traces into pre-defned value ranges. The quantization process maps 

continuous values to a fxed set of discrete or bins. By quantizing the values, we create a fnite set 

of possible outputs that can be used as ground-truth labels during training. After quantization, 

we create program state labels and execution coverage labels that will help the model to capture 

the program executions. The dataset fnally ends up with a set of samples and labels, where each 

sample includes the source code with its program input and the labels represent the execution 

trace of this sample. 

Stage-2: Execution-aware Pre-training with Traces. We utilize the pre-processed 

samples and labels obtained from Stage-1 to perform supervised pre-training. Specifcally, we use 

a Transformer-encoder-based model [29] to learn the program traces and improve the model’s 

understanding of program execution. The model could be either trained from scratch or loaded by 

the pre-trained weights of existing code language models. To achieve the goal of producing 

execution-aware code representation, we propose three pre-training objectives. The frst objective 

is learning to generate the source code. We believe that understanding the naturalness of code 



91 

text [17, 42] is fundamental for the model to capture more sophisticated signals such as program 

execution. This objective is implemented with masked language modeling (MLM), which masks a 

certain percentage of tokens in the source code and trains the model to reconstruct the masked 

tokens based on the surrounding context. The second objective is learning to predict the program 

states. By predicting program state labels that were generated in Stage-1, the model learns to 

capture the data fows and the side efects of code execution. The third objective is to predict the 

execution coverage. By predicting the execution coverage labels generated by Stage-1, the model 

learns to capture the dynamic control fow and helps the model understand how the program 

state is reached and evolving. 

Stage-3: Task-specifc Fine-tuning. Finally, we apply TRACED to several downstream 

tasks. We load the pre-trained weights of TRACED, fne-tune the model for a specifc task, and 

keep updating the model weights. Fine-tuning does not require the program to be executed; 

rather, TRACED will reason about the execution statically with its learned execution signals 

during the pre-training, and learn to accomplish the task accordingly. In many useful 

applications, we would not have program traces available. We consider three downstream tasks for 

TRACED: static execution estimation, which includes execution coverage and runtime variable 

value predictions, clone retrieval, and vulnerability detection. 

4.3 Tracing & Feature Engineering 

In this section, we introduce how TRACED builds the learnable features from program 

traces for models to learn the program executions. 

4.3.1 Representing Program States 

To imitate the way that human developers monitor variable values to understand program 

behavior, we propose to train neural models with the log of runtime variable values to recognize 

execution patterns and infer dynamic program behaviors in a way that is similar to human 
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1 // INPUT: 4 
2 int factorial() {
3 int x, y; // {'x': 32767, 'y': 32767}
4 x = atoi(argv[1]); // {'x': 4, 'y': 32767}
5 if (x < 0) { // {'x': 4, 'y': 32767}
6 y = −1; 
7 return y; 
8 }
9 y = 1; // {'x': 4, 'y': 1}

10 for (int i = 1; i <= x; i++) // {'x': 4, 'y': 24, 'i': 5}
11 {
12 y ∗= i; // {'x': 4, 'y': 24, 'i': 5}
13 }
14 return y; // {'x': 4, 'y': 24, 'i': 5}
15 } 

Figure 4.3: Program states with concrete runtime values. 

intuition. By taking the log of variable values during the execution, we can represent the program 

states in a more compact and interpretable form that is manageable for deep neural nets to 

process. 

We build the program state by taking snapshots of variable values at program points during 

execution. When we take a snapshot at a specifc time step, similar to the moment that the 

program is paused by a debugging breakpoint set right after line l, we maintain a value mapping, 

M , to map the variable to its current value, similar to the value mapping table of the debugger. 

To record the program state, we take the value snapshot after each line of execution and log the 

variables’ current values. 

Defnition: Program State. Formally, we defne the program state after the execution of a specifc 

line, l, as s(l), represented as a set of variable values at this moment: 

s(l) = {M(v, l) | v ∈ V, l ∈ L} 

V represents the set of all traced variables, and L is the set of lines with source code. 

Figure 4.3 shows an illustrative example of a simple factorial program and the comments after the 

source code indicate the program state after the execution of that line. Also, we do not log the 

program state for lines without executable code, such as line-8 of Figure 4.3. 
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Note that a source code line could be executed multiple times due to a loop or recursion. 

While a more detailed representation of program execution might provide additional insights, it 

also increases the complexity and computational requirements of the model. As a trade-of 

between the complexity and performance, we use the last occurring execution of each line to 

fnalize the program states, so that s(l) keeps getting updated until the execution terminates. 

We apply such a trade-of based on the observations of real executions. Specifcally, the last 

occurring values are typically sufcient to capture the results of loops and recursions. For 

example, when calling a recursive function, only the last occurring value(s) of returned variable(s) 

will be taken to fulfll the following execution of the caller. Similarly, the fnal values when loops 

fnish will take part in the future execution. As shown in line-12 of Figure 4.3, variable y gets 

multiplied inside a loop to calculate the factorial. Its value changes in each iteration, but it is less 

informative to reason about the program’s overall behavior, as only the fnal value is used as the 

return value (line-14). Thus, we would represent y using the value from the last occurring 

execution of the loop. 

4.3.2 Quantized Variable Values 

As we introduced in Section 4.1, the distribution of concrete values is sparse and complex, 

consequently difcult for a statistical model to ft. In addition, concrete values are not always 

necessary. Some common program behaviors are accompanied by extremely large or small variable 

values – for example, in C, uninitialized variables are often set to zero or uncommonly large 

variables, but the concrete values are not meaningful because they depend only on the data 

remaining on the stack, which could be randomly large or small. The model could represent such 

behaviors by estimating the value ranges of variables without accurately predicting their concrete 

values which are not informative or meaningful. Figure 4.3 displays some of these cases: after the 

execution of line-3, x and y are uninitialized and randomly initiated as 32,767, which has no 

concrete meaning but only makes the training data noisy and sparse. 
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Table 4.1: TRACED’s design of quantized variable values. 

Data Type Value Types Concrete Value Quantized Value 

Integer 

0 < v ≤ 10, 000 
10, 000 < v 

0 
−10, 000 ≤ v < 0 

v < −10, 000 

Positive Regular 
Positive Large 

Zero 
Negative Regular 
Negative Large 

0.0 < v ≤ 1.0 Positive Small 

Basic Float/Double 

1.0 < v ≤ 10, 000.0 
10, 000.0 < v 

0.0 
−1.0 < v < 0 

−10, 000.0 ≤ v < −1.0 
v < −10, 000.0 

Positive Regular 
Positive Large 

Zero 
Negative Small 

Negative Regular 
Negative Large 

‘\0’ Null 
Character 

Boolean 

v ∈ {a-zA-Z} 
v ̸= ‘\0‘; v /∈ {a-zA-Z} 

0 
1 

Alphabetic 
Non-alphabetic 

False 
True 

Void - Void 

Integer [v1, v2, . . . , vn]; quantize(vi) ∈ Integer 
Initialized 

Not Initialized 

Array Float/Double [v1, v2, . . . , vn]; quantize(vi) ∈ Float/Double 
Initialized 

Not Initialized 

Character “⟨string⟩” Initialized 
Not Initialized 

Integer 
0x0 

Not 0x0 
Null 

Not Null 

Pointer Float/Double 
0x0 

Not 0x0 
Null 

Not Null 

Character 
0x0 

Not 0x0 
Null 

Not Null 
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To reduce the data complexity and increase the density, we defne 30 categories for quantized 

values in Table 4.1. To comprehensively represent the variable values, the proposed quantized 

categories consider both types, i.e., the data types and value types, that are statically defned, 

and the dynamic runtime values. Our quantized categories cover the most common variable types 

and value types, which we have found sufcient to capture important program execution 

behaviors and relationships. By focusing on the most frequent value types, we can capture the 

essential features of program execution. This makes our approach efective at capturing the 

generalized program execution behaviors and patterns. We empirically illustrate our quantization 

strategy’s efectiveness in Section 4.6.3. 

4.3.3 Building Learnable Labels for Code Models 

We used supervised pre-training with traces. We construct labels for code models to learn two 

main perspectives of execution: program states and execution coverage. 

Program State Labels. As we discussed in previous sections, we frst trace the program 

variables during execution and log their runtime values. We then quantize these values into 

pre-defned categories. This process results in a sequence of program states, each represented by a 

set of quantized variable values (as shown in Figure 4.3), and we build the learnable features for 

the code model on top of these program states. Specifcally, we build labels for variables that can 

be quantized into Table 4.1’s categories and train the model to predict these labels given their 

source code representations (Section 4.4.1.2). The label for each variable is represented as a tuple: 

(data type, value type, quantized value). For example, in Figure 4.3, the label of variable X 

occurring at line-3 is (Basic, Integer, Positive Large), as the current value of X is 32,767. We build 

such labels for all occurrences of valid variables that can be quantized, and the set combining all 

labels is considered as the program state labels of the code sample. 

Execution Coverage Labels. To unify our design and reduce the complexity of the 

model’s learning process, we also build execution coverage labels for each occurrence of variables, 
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aligning with the program state labels. Concretely, we specify whether a variable is covered or 

not. The variables within the executed lines will be regarded as covered, and those within the 

unexecuted lines will be labeled as not covered by execution. For example, in Figure 4.3, Line-6 is 

not executed, so y at this line has the program state label of (Basic, Integer, Not Covered), while 

y at line-9 is executed and has the program state label with concrete quantized value of (Basic, 

Integer, Positive Regular). 

4.4 Model 

In this section, we explain the details of TRACED’s components and learning objectives 

during pre-training and fne-tuning. 

Model Architecture. Figure 4.4 shows the high-level architecture of TRACED’s 

pre-training. The backbone of TRACED is a 12-layer Transformer encoder, similar to BERT [10] 

and RoBERTa [29], which learns the generic code representations. On top of the backbone 

Transformer layers, TRACED stacks multiple multi-layer-perceptron (MLP) layers as prediction 

heads for diferent tasks. During the pre-training, as shown in Figure 4.4, TRACED applies a 

language model prediction head, i.e., LM layer, to predict the masked token given its 

contextualized representation, a program state prediction head to predict the program states 

labels that we defned in Section 4.3.3, and an execution coverage head to prediction the 

execution coverage labels. For the task-specifc fne-tuning, the backbone Transformer layers are 

loaded with the pre-trained weights, while the prediction heads are replaced by a newly initialized 

head customized for the specifc downstream task. 

4.4.1 Execution-aware Pre-training 

4.4.1.1 Model Input of Pre-training 

Each pre-training sample includes the source code of an executable program and a valid 

executable input. As shown in Figure 4.4, the executable input and the source code are fattened 
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Figure 4.4: High-level model architecture of TRACED. In the labels for program state layers, 
NEG REG means “Negative Regular”, UNK means “Unknown”, and POS REG means “Positive 
Regular”, which we have defned in Table 4.1. 

and concatenated as one sequence. To distinguish the input from the source code, as they are 

diferent modalities, TRACED uses special [SEP] tokens to separate them and indicate individual 

positions. To alleviate the out-of-vocabulary concern of programming languages [22], TRACED 

takes a pre-trained SentencePiece [25] subword tokenizer with vocabulary size of 50,000. It uses 

this tokenizer to divide the concatenated sequence into a new sequence of sub-tokens. 

Formally, we defne the executable inputs as E = {e1, ..., ei} and fattened source code as 

C = {c1, ..., cj }, then the fnal model input will be 

I ={[CLS], e1, ..., ei,[SEP],[SEP], c1, ..., cj ,[SEP]}. TRACED truncates the executable inputs 

and the source code separately if they are too long. TRACED sets the maximum length of the 

executable input sequence to 64 tokens, and the source code to 960 tokens. These numbers are 

selected based on the statistics of executable inputs’ length of our pre-training dataset 

(Section 4.5.2.1), and ft the rest of the model input with source code. 

Note that the execution traces are not part of the model input, but are used as ground truth 

labels for the model to predict during pre-training. 
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4.4.1.2 Learning Execution-aware Code Representations with Traces 

TRACED is pre-trained with multiple objectives to jointly capture the static and dynamic 

perspectives of the source code. 

Learning Code Text. Learning code text is the essential frst step toward understanding 

the execution of a program, as code text is the primary source of capturing the code 

naturalness [17] and other static properties. We implement the code text learning objective by 

adapting the masked language model objective [29, 10, 13]. Specifcally, given the model input 

sequence, I, TRACED randomly chooses 15% of tokens [29, 10] only from the source code 

sequence C part and replaces with the special [MASK] token (e.g., printf in Figure 4.4 is 

masked). It leaves the executable input sequence E as is. The model is trained to encode the 

context of [MASK] into its code representation, rmasked, and reconstruct the concrete masked 

tokens conditioned on the representation. We represent the loss of learning code text as: 

X 
Lcode−text = −logP (cmasked | rmasked) (4.1) 

masked 

In Figure 4.4, the LM (Language Model) layer receives the masked token representation 

generated by the last Transformer layer. The LM layer then predicts the concrete tokens by 

mapping the token representation to the probability of each token in the vocabulary, using an 

MLP (Multi-Layer Perceptron) layer. This process can be thought of as a classifcation task, where 

the number of classes is equal to the size of the vocabulary. The goal is to learn a mapping from 

the masked token representation to the most probable token in the vocabulary, given its context. 

Learning Program States. The second pre-training objective, program state prediction 

(PSP), is designed to enable the model to learn program execution behavior by predicting the 

program state labels of the traced variables. These program state labels, as defned in 

Section 4.3.3, contain information about the data types, value types, and quantized values of the 

variables at the end of the program execution. Specifcally, TRACED frst identifes the variable 
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tokens in the source code sequence, denoted as {cvar | cvar ∈ V } ⊆ C, where V is the set of all 

traced variables and C is the source code sequence. It then extracts the representation, rvar, of 

each variable token and feeds it into the program state layer. The program state layer predicts the 

variable’s joint likelihood of being the ground-truth data type, dvar, value type, tvar, and 

quantized value, qvar. Note that if a variable is tokenized as multiple sub-tokens, all belonging 

sub-tokens share the same program state label. Finally, TRACED computes the loss of PSP as 

the sum of the losses of all variable tokens used for predicting their program states. 

Mathematically, the loss is expressed as follows: 

X 
Lprogram−state = −logP ( dvar, tvar, qvar | rvar) (4.2) 

var 

Learning Variable Coverage. The third pre-training objective, variable coverage 

prediction (VCP), aims to learn the execution coverage, which is crucial for understanding the 

control fow of the code given a specifc input. Similar to the PSP objective, VCP targets making 

predictions for variable tokens. Also, sub-tokens belonging to the same variable will be assigned 

the same coverage label. The loss of VCP is as follows: 

X 
Lvar−cov = −logP (covvar | rvar) (4.3) 

var 

For the efciency of joint optimization, we share the weights between the program state layers 

and the execution coverage layers, as they are instinctively both classifers optimized by 

cross-entropy loss. Concretely, the coverage label will be learned jointly with the quantized value: 

if a variable is covered, it will be assigned a specifc quantized value label, and otherwise, it will 

be assigned as “Not Covered”. 

Finally, TRACED combines the losses of all three objectives and computes their sum as the 

fnal loss of a pre-training sample. It back-propagates the gradients through both the prediction 

layers and the backbone Transformer layers to update their weights. We denote the full set of 

TRACED’s learnable parameters as θ and represent the loss as follows: 
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L(θ) = Lcode−text(θ) + Lprogram−state(θ) + Lvar−cov(θ) (4.4) 

4.4.2 Task-specifc Fine-tuning 

TRACED loads the model weights of Transformers layers, which are pre-trained to produce 

execution-aware code representations, and further fne-tunes the model for downstream tasks. We 

consider three downstream tasks as the main applications for TRACED: (1) Static estimation of 

program execution which includes both execution coverage prediction and runtime variable value 

prediction; (2) Semantic Clone Retrieval; (3) Vulnerability Detection. 

Static Execution Estimation. Our goal of pre-training is to encode the execution 

patterns into the code representation, so the model could estimate the program execution 

statically. As a direct application, TRACED fne-tunes the model to predict (1) the execution 

coverage and (2) runtime variable values using source code and program input. TRACED 

evaluates the fne-tuned model to estimate the execution of unseen programs in the same way. 

Specifcally, for execution coverage prediction, TRACED identifes all the branching 

statements to locate the branches, B = {b1, b2, ..., bm}, within the source code. It trains the model 

to predict a binary label, 0 means the branch is not covered by the current execution and 1 means 

covered, for each bi ∈ B. For the model’s convenience to make predictions, the special token 

[MASK] is inserted at the beginning of each branch. For example, the following if-else has two 

branches that are pre-processed for branch prediction: if (condition) {[MASK] ...} else 

{[MASK] ... }. During the fne-tuning, the Transformer layers learn to encode the branch 

information into the corresponding [MASK] token representation with the built-in bi-directional 

attention and positional encoding. Then the classifcation head takes [MASK] representations to 

predict whether a branch is covered by the current execution. For variable value prediction, 

TRACED identifes variables, V = {v1, v2, ..., vn} and trains the model to predict their quantized 

values (Section 4.3.2) during the execution. 
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Semantic Clone Retrieval. Detecting semantic clones is signifcant for software 

maintenance [23, 28], yet very challenging in practice since the token and syntactic structures 

overlap among semantic clones may be quite limited. This task requires the model to estimate the 

program behaviors without executing the programs and capture the similarity among them. It 

evaluates the model’s semantic reasoning capacity to identify the code similarity and retrieve 

clones: given a program as a query, and an arbitrary collection of programs as candidates, the 

model needs to identify the query’s semantic clones from possibly thousands of candidates. 

Vulnerability Detection. Vulnerability detection is a crucial task in software security, 

aiming to identify potential security vulnerabilities in software code that could be exploited by 

attackers. The vulnerabilities may exist due to various reasons, including programming errors, 

design faws, or confguration issues. Detecting these vulnerabilities early in the software 

development lifecycle can prevent potential attacks, mitigate risks, and save resources. We 

fne-tune TRACED’s pre-trained model on datasets consisting of vulnerable and non-vulnerable 

code samples, so the model learns to classify code functions as vulnerable or non-vulnerable by 

estimating their execution behavior. 

4.5 Experimental Setup 

4.5.1 Trace Collection 

In this section, we explain how we traced the dynamic information in programs to produce 

concrete traces, given the source code and program input. 

First, we compile the program using gcc with the options -g -O0. Option -g preserves debug 

information, which is necessary in order to read variables and source code locations using the 

debugger, and option -O0 disables compiler optimizations, which could optimize out some 

variables thus preventing them from being read at runtime. We use this option because we seek to 

model the semantics of the source code in terms of variable values rather than the optimized 

machine code. 
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Second, we load the program with the given standard input redirected to stdin and attach 

the gdb2 debugger, using the Python API to implement the tracing command. Starting from the 

entry point (main), we execute the program one line at a time using the step command. At each 

line, we print out the concrete values of all variables in scope. We also set breakpoints at the 

entry of each user-defned function, where we log the values of each parameter. For numeric types, 

we simply log their string representation. For char and char * (string) types, we log the 

human-readable values of the chars/strings. We use gdb’s pretty-printer to print struct types 

and statically allocated array types, such as int[<size>]. For pointer types, we print the 

memory address of the pointer as a hex code. We only traced the functions that were defned in 

the source code and skipped over all standard library functions. 

4.5.2 Dataset 

4.5.2.1 Pre-training Dataset 

IBM’s CodeNet Dataset [40] includes 4,053 programming challenges for several programming 

languages from the AIZU Online Judge and AtCoder platforms, and each problem has up to 

thousands of implementations submitted by distinct programmers. In this work, we focus on the 

C language as the main resource for the pre-training and downstream tasks, so we build our 

pre-training dataset with programming challenges that have C solutions. Besides the large 

number of samples and the complexity of programming challenges, we choose CodeNet to build 

our datasets as it maintains at least one and at most twenty executable inputs for each challenge, 

so we could execute and trace the implementations of the challenge, and consequently build our 

execution labels for the model to learn. 

Out of 1,900 programming challenges with C solutions, we select 1,805 of them to build the 

pre-training dataset and leave the other 95 problems as held-out problems for evaluating the 

model’s capacity for the downstream static execution estimation task. Splitting samples strictly 

by challenge efectively avoids the issue of data leakage from the training set to the held-out set. 

2https://www.sourceware.org/gdb 

https://www.sourceware.org/gdb
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Table 4.2: Details of downstream task datasets. 

Task Dataset Train Valid Test 

Execution Estimation CodeNet 121,319 13,116 13,116 

Clone Detection CXG-POJ104 32,000 8,000 12,000 

Vulnerability Detection 
REVEAL 

D2A 

15,867 

4,644 

2,268 

597 

4,535 

619 

CXG-Devign 21,854 2,732 2,732 

We randomly sample up to 200 execution traces for each challenge, and this ends up with 121,319 

training traces. 

4.5.2.2 Downstream tasks 

In this section, we introduce the datasets we use for each downstream task and explain the 

corresponding evaluation metrics. The statistics of these datasets are in Table 4.2. 

Static Execution Estimation. We build the dataset for this task using CodeNet. We 

build the training samples from the 1,805 challenges that have been selected by the pre-training, 

and build evaluation samples from the held-out 95 challenges to avoid model memorization and 

data leakage. 

Metrics. For the execution coverage prediction, we consider evaluation metrics in two 

granularities: full execution path and branch coverage. Concretely, for a sample with m branches, 

we denote the full set of their labels as LB = {lb1, lb2, ..., lbm}, and the model prediction set as 

ˆ ˆ ˆLB = {lb̂1, lb2, ..., lb̂  
m}. If LB == LB, we regard the prediction as matching the full execution 

ˆpath. For the branch coverage, we compute the occurrence of lbi == lbi, where 1 ≤ i ≤ m, and 

report the accuracy, precision, recall, and F1. Similarly, for the n quantized variable values within 

ˆthe program, QV = {qv1, qv2, ..., qvm}, our model makes predictions as QV = {qv̂1, qv̂2, ..., qv̂m}. 

ˆIf QV == QV , we say the model accurately predicts the full execution. For the individual value 

match, we compute the occurrence of qvi == qv̂i and report the accuracy. 
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Semantic Clone Retrieval. We use CodeXGLUE-POJ104 [31, 30] as the dataset for this 

task. CodeXGLUE-POJ104 contains 104 programming challenges, and each has 500 C/C++ 

solutions submitted by diferent programmers. CodeXGLUE [30] reconstructs it as a public 

benchmark by splitting the dataset into Train (64 challenges), Dev (16 challenges), and Test (24 

challenges) sets, with no overlapped challenge between any two sets. 

Metrics. MAP@R (Mean Average Precision @ R)3 is the main metric of this task, where we 

follow the design of the CodeXGLUE benchmark. Average precision at R is a common metric to 

evaluate the quality of information retrieval; it measures the average precision scores of a set of 

the top-R clone candidates presented in response to a query program. The “R” for CodeXGLUE 

is 499 as it has 500 solutions for each challenge. 

Vulnerability Detection. We utilized three publicly available datasets: REVEAL (RV) [8], 

D2A [55], and CodeXGLUE-Devign (CXG) [30, 56]. The REVEAL dataset was curated by 

Chakraborty et al. [8] to simulate a real-world scenario where bugs are relatively rare, resulting in 

a ratio of approximately 1:10 between buggy and benign samples. The D2A dataset is a balanced 

dataset focusing on bug-fxing commits. It labels the previous version of modifed functions as 

buggy and the fxed version as benign. Finally, the CodeXGLUE-Devign dataset, introduced by 

Zhou et al. [56], is also a balanced dataset that has been reconstructed as a public benchmark by 

CodeXGLUE, ensuring that all models can be evaluated using the same train/valid/test splits. 

Metrics. REVEAL is an imbalanced dataset, so we use F1 as the evaluation metric. D2A and 

Devign are balanced datasets, so we follow the original benchmark to report the classifcation 

accuracy. 

4.5.3 Model Confguration 

TRACED’s backbone is a standard RoBERTaBASE architecture [29] with 12 layers of 

Transformer-encoder, and each layer has 12 attention heads and the hidden dimension is 768. 

3https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_ 
precision 

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Mean_average_precision
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TRACED is initialized with the pre-trained weights from UnixCoder [14]4 , and we use its BPE 

tokenizer to split the rare tokens into BPE sub-tokens. The maximum sequence length is 1024 

BPE tokens, and the longer sequence will be truncated. When the code sample is paired with 

executable inputs, the maximum length for the executable input is 64, and the source code is 960. 

Our experiments are conducted on 2 × 24GB NVIDIA GeForce RTX-3090 GPUs. We further 

pre-train the model for 10 epochs to learn the program execution with two learning rates, 5e-5 and 

2e-5, and report the best-performing models for downstream tasks. For all the fne-tuning tasks, 

we use the learning rate of 8e-6. Learning rates typically decrease for later phases [13, 15, 11], so 

TRACED follows the same design. We use Adam optimizer [24] with the linear learning rate 

decay. Our model is implemented mainly with Pytorch [35] and Huggingface [49]. 

4.6 Evaluation 

In this section, we ask the following four RQs: 

• RQ1: How efective is TRACED in statically estimating the program execution? 

• RQ2: How does our proposed training strategy contribute to learning the program execution? 

• RQ3: Is our proposed quantized values for programs efective in guiding the model to learn 

program executions? 

• RQ4: How does TRACED perform w.r.t. statically pre-trained baselines for code 

understanding tasks? 

4.6.1 RQ1. Efectiveness of TRACED in Static Estimation of Execution 

In this section, we demonstrate the efectiveness of TRACED in statically estimating 

program execution. The evaluation is more challenging and realistic than TRACED’s 

4Specifcally, we load unixcoder-base-nine, as its pre-training considers C language code samples: https:// 
huggingface.co/microsoft/unixcoder-base-nine. Note that this checkpoint is pre-trained only with the MLM 
objective, while the original paper [14] reports other better-performing variants that are not released publicly. 

https://huggingface.co/microsoft/unixcoder-base-nine
https://huggingface.co/microsoft/unixcoder-base-nine


106 

pre-training as it requires the model to predict not only for individual variables but also branches 

and the full execution path. 

Baseline. In this RQ, we mainly compare the execution-aware TRACED with UnixCoder [14]. 

Now we explain the reasons for this choice. First, TRACED is initialized with the pre-trained 

UnixCoder weights, so comparing TRACED with the UnixCoder performance is a direct 

assessment of the impact of our proposed pre-training. Second, UnixCoder reports the 

state-of-the-art performance in many tasks, including clone detection, code search and 

summarization, and code generation and completion, signifcantly outperforming other 

pre-trained code models, such as CodeBERT [13] and GraphCodeBERT [15]. Third, it consumes 

up to 1,024 tokens, while most pre-trained code models [13, 6, 15, 1, 48] take at maximum 512 

tokens. By consuming longer sequences, UnixCoder is able to handle longer programs and make 

complete predictions without truncating code in many cases. As TRACED is also designed to 

consume 1,024 tokens, it is not fair to compare it in this task with baselines with a maximum 

length of 512, as the baselines will necessarily consider fewer branches for prediction. 

Result. The comparison is shown in Table 4.3, Row-1 vs. Row-2. TRACED signifcantly 

outperforms UnixCoder in the static estimation of execution coverage and dynamic values of 

variables, especially when the evaluation granularity is coarse, i.e., full execution path (Full Path 

column in Table 4.3) and the runtime values of the full execution (Full Exec column in Table 4.3). 

TRACED correctly predicts the complete execution paths for 71.6% held-out samples and 

Table 4.3: Performance on static execution estimation. 

Task 
Full Path 

Coverage 

Branch 

Runtime Value 

Full Exec Var 

Metric Acc Acc Prec Rec F1 Acc Acc 
UnixCoder 63.7 79.7 81.7 85.4 83.5 39.3 87.8 

TRACED 
-w/o MLM 
-w/o PSP 
-w/o VCP 

71.6 
70.4 
69.0 
66.1 

83.1 
82.6 
81.4 
80.3 

84.6 
85.3 
83.0 
82.4 

88.1 
86.0 
86.9 
85.6 

86.3 
85.6 
84.9 
84.0 

49.2 
49.0 
44.0 
46.7 

89.2 
89.2 
87.4 
89.0 

-MLM-only 65.6 81.0 83.1 86.0 84.6 43.0 87.5 
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//Input: 19 100 
#include <stdio.h> 
int main(){ 

int A, N, T, B; 
scanf("%d %d", &N, &A); 
T = N * N; 
B = T - A; 
if (A > 0) {printf("%d", B);} // Branch-1 
else {printf("%d", T);} // Branch-2 
return 0; 

} 

UnixCoder Predictions (Wrong) 

Branch-1: Not executed 

Branch-2: Not executed 

TRACED Predictions (Correct) 

Branch-1: Executed 

Branch-2: Not Executed 

Figure 4.5: A qualitative example of execution coverage prediction. The source code is the same as 
Figure 4.1, but the input triggers a diferent execution path. TRACED correctly fips the prediction 
while UnixCoder remains the same prediction. 

accurately predicts all variable values for 49.2% executions, revealing the execution-aware 

pre-training improves over UnixCoder’s performance by 12.4% and 25.2%, respectively. 

Case Study with Qualitative Examples. We present two qualitative examples in Figures 4.5 

and 4.6 to concretely compare TRACED with UnixCoder in execution coverage and runtime 

value predictions, respectively. Both samples have simple execution logic from the human 

perspective, but the statically pre-trained UnixCoder still fails to correctly estimate them. 

Figure 4.5 illustrates that UnixCoder is not sensitive to distinct inputs that trigger diferent 

execution coverage, while TRACED is able to determine the numerical relations among varied 

values. Figure 4.6 illustrates TRACED’s capacity in exposing abnormal program behaviors. 

Result-1: With a similar number of learnable parameters, TRACED outperforms the state-of-

the-art pre-trained code model in the static estimation of program execution task. Our proposed 

pre-training successfully encodes the execution awareness into TRACED’s code representations. 
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//Input: 4 4320 4320 4320 
#include <stdio.h> 
int main (void) { 

int n, a, max = 0, sum = 0, i; 
for (i = 0; i < n; i++){ // Quantized value of n? 

scanf("\%d", &a); 
if (a > max) max = a; 
sum += a; 

} 
printf("\%d\\n" , sum - max / 2); 
return 0; 

} 

UnixCoder Prediction (Wrong) 

n: Zero 

TRACED Prediction (Correct) 

n: Negative Large 

Figure 4.6: A qualitative example of runtime value prediction. The sample contains a vulnerability 
of type CWE-457 “Use of Uninitialized Variable”. The uninitialized n, which is randomly assigned 
as -32767, is used in the for-loop. TRACED successfully exposes this abnormal behavior statically 
by identifying n as a “Negative Large” value while UnixCoder fails. Predictions of other variables 
are hidden for better illustration. 

4.6.2 RQ2. Efectiveness of TRACED’s Pre-training Objectives 

One of the main contributions of this chapter is proposing multi-task pre-training to 

efectively learn the execution-aware code representations. In this RQ, we study the efectiveness 

and contribution of each of TRACED’s objectives, and consequently illustrate the importance of 

the multiple tasks. 

To conduct these experiments, we remove one pre-training objective at a time and pre-train 

the variant with exactly the same setup as the main model. Then we fne-tune the variant on the 

static execution estimation task and compare the performance with the main model. We also 

consider a variant that is pre-trained on our dataset but only with MLM objectives. The results 

are shown in Row 3-6 of Table 4.3. Removing any objective hurts TRACED’s performance, 

suggesting that comprehensively learning both static and dynamic code properties is more 

efective than learning one perspective alone. 
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Result-2: TRACED’s multi-task pre-training helps the model comprehensively learn both 

static and dynamic aspects of source code. Removing any one of TRACED’s three pre-training 

objectives noticeably hurts the model’s performance in statically estimating program executions. 

4.6.3 RQ3. Efectiveness of TRACED’s Quantized Variable Values 

Another contribution of this chapter is that the simplifed and compact representation of 

program executions helps code models to capture dynamic code properties. In this RQ, we 

empirically reveal that the design of quantized variable values especially contributes to the 

efective learning of the code models, as it reduces the data sparsity of variable values but still 

defnes sufciently detailed value categories to distinguish dissimilar values. 

To isolate the evaluation of TRACED’s quantized values, we pre-train several variants by 

only recreating quantized value labels, i.e., qvar in Equation (4.2), using diferent value 

abstraction strategies. For example, when we pre-train a variant studying the impact of concrete 

values, we replace TRACED’s defned qvar with the concrete traced values. As diferent strategies 

abstract values at diferent granularities, it is not feasible to compare them for the value 

prediction task, since the coarse-grained strategy will beneft. Therefore, we only fne-tune the 

studied variants for the execution coverage prediction. 

Baseline. First, we consider comparing with concrete values, as it is the most intuitive strategy 

to represent variable values. Then, we consider two data abstractions from LExecutor [44]: coarse 

and fne-grained. They share similar high-level intuition with us, mapping concrete values to 

pre-defned bins to reduce data complexity and consequently help the model’s learning. Note that 

LExecutor’s data abstraction serves a diferent goal than TRACED, and focuses on Python while 

TRACED focuses on C, so we could not directly reuse their pre-defned bins. As their defnition 

of data abstraction is clear and straightforward, we re-implement their data abstraction for the C 

language and integrate it into our framework for comparison. We discuss and compare LExecutor 

with TRACED in more detail in the Related Work section (Section 4.7). 
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Figure 4.7: Comparing TRACED’s design of quantized variable values with other value abstraction 
strategies. 

Results. The comparison of value abstractions are shown in Figure 4.7. Unsurprisingly, concrete 

values report poor performance compared to other data abstractions, empirically revealing the 

difculties for code models to ft sparse and complex data distributions. Interestingly, we notice 

both of LExecutor’s abstractions perform slightly worse than TRACED. We speculate that 

LExecutor is not as sensitive as TRACED to numeric relations in the conditional statements, as 

they do not distinguish among small, regular, and large values. Note that execution coverage is 

not the main focus of LExecutor, so more fne-grained categories are not required to serve its 

goal, while they are empirically proven to be necessary for TRACED’s scope. 

Result-3: TRACED’s quantized variable values directly contribute to the efectiveness of its 

execution-aware pre-training. It reduces the data sparsity of concrete values but defnes suf-

ciently detailed value categories to distinguish dissimilar values for reasoning about execution 

paths. 
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Table 4.4: Comparison of Clone Retrieval and bug detection. 

Task Clone Retrieval Vulnerability Detection 

Metric MAP@R F1 Accuracy 

Dataset POJ-104 RV D2A CXG 

CodeBERT 
GraphCodeBERT 
PLBART-base 
CodeT5-base* 
UnixCoder 

85.2 
86.7 
75.9 
65.9 
89.5 

45.5 
46.6 
46.9 
46.5 
47.4 

61.0 
58.3 
61.7 
62.1 
61.2 

63.2 
62.9 
63.3 
64.4 
65.3 

TRACED 91.2 50.4 62.1 65.9 

*CodeT5-base has 223M parameters, roughly twice as large as other baselines and TRACED. We report 
its performance as CodeT5-small has only 60M parameters and performs poorly, and CodeT5 does not 
provide a ∼110M model. 

4.6.4 RQ4. TRACED’s Performance in Code Understanding Tasks 

In this RQ, we study TRACED’s performance on two code understanding tasks: semantic 

clone retrieval and function-level vulnerability detection. Note that samples for these tasks are 

not paired with executable inputs, so the model needs to reason about the general code semantics 

to make predictions. 

Baselines. We consider fve pre-trained code models with similar parameter sizes to TRACED. 

CodeBERT [13] pre-trains a RoBERTa model with MLM and replaced token detection (RTD) 

tasks. GraphCodeBERT [15] is initialized with CodeBERT and continues pre-training with 

augmented data fow graphs to learn the static data dependencies. PLBART [1] and CodeT5 [48] 

both apply the sequence-to-sequence neural architecture, where PLBART adapts the BART [26] 

model to learn code translation and summarization, and CodeT5 adapts [41] to predict the 

missing code tokens and locate the identifers. We also, again, consider UnixCoder as a baseline. 

Results. We show the results in Table 4.4. Even though the samples in these benchmarks do not 

have executable inputs, TRACED still outperforms the statically pre-trained models by a clear 

margin. We speculate the reason is that TRACED could estimate the general execution 

behaviors without specifc inputs, and the program semantics regarding these two code 
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understanding tasks could be better captured with such a general sense. Specifcally, clone 

retrieval requires the model to identify the behavioral similarities of code as semantic clones 

mostly difer in code text and syntax. Also, vulnerable code with potential anomalies could be 

directly identifed by TRACED in some cases like Figure 4.6. 

Result-4: TRACED outperforms statically pre-trained models in clone retrieval and vulner-

ability detection tasks, suggesting TRACED’s general estimation of execution helps it capture 

the code semantics more efectively. 

4.7 Related Work 

Pre-trained Models for Source Code The research community has shown a growing 

interest in developing pre-trained Transformer models for source code. These models can be 

broadly categorized into three primary architectures: Encoder-only [13, 15, 47, 5, 21, 6, 11], 

Decoder-only [9, 50, 2], and Encoder-decoder [33, 1, 14, 27, 7]. Encoder-only models 

predominantly employ MLM objective and sequence understanding tasks (e.g., predicting next 

statement [21] and contrasting semantics [11]). This architecture excels at understanding the 

static code features. Decoder-only models, on the other hand, are typically trained by predicting 

code tokens in a left-to-right manner. This architecture focuses on generating code text based on 

learned patterns. The Encoder-decoder models combine the strengths of both Encoder-only and 

Decoder-only models and are pre-trained using various tasks, including denoising autoencoding 

for reconstructing wrongly permuted tokens [1], predicting missing identifers in the code [48], and 

recovering method names from the source code [33]. 

These models primarily focus on learning the static aspects of source code but often miss out 

on capturing the dynamic properties of code execution. This limitation restricts these models 

from accurately inferring runtime behaviors, debugging issues, and understanding complex 

program states. 
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Modeling Program Execution Pei et al. [39, 37, 38] proposed a series of pioneering 

works to learn the executions of binary programs with Transformer-based models. They used 

concrete values from registers, which are feasible in their scope because binary programs have a 

smaller space of possible values and efects compared to source code. On the other hand, our work 

focuses on encoding execution at the source code level by imitating the developers’ code practice. 

Variables in source code have more complicated data and value types than machine registers. We 

introduce quantized values in order to decrease the data complexity and sparsity. 

Several works [53, 43, 4, 34, 3, 51] have attempted learning to execute programs as a direct 

goal. Souza and Pradel [44] also proposed LExecutor to predict missing values during execution. 

While it shares similar intuition of mapping concrete values to discrete categories, LExecutor is 

distinct from TRACED in several perspectives. First, LExecutor focuses only on predicting the 

values, while TRACED proposes a general pre-training strategy to encode the comprehensive 

execution awareness, not only values but also execution coverage, into the code representation. 

Besides, to yield code representations at a better quality, TRACED jointly learns both code text 

and dynamic executions rather than sticking to a single perspective. Due to the distinct aims and 

designs, we empirically illustrate in RQ3 (Section 4.6.3) that LExecutor’s value abstractions are 

not perfectly aligned with our scope. 

Nie et al. [32] annotated programs with information about the program’s possible executions 

without executing the code but provided only statically available information. Conversely, several 

works [16, 45, 46, 36] require dynamic traces as input. We show that TRACED’s pre-training is 

able to encode the execution awareness into code representation and estimate the dynamic 

semantics with static information alone. We expect such an implicit execution encoding could also 

help with broader software engineering tasks, such as bug localization and program repair [51, 52]. 

4.8 Threats to Validity 

Internal Validity First, the current design of quantized value is not covering all variables 

within the program due to the complexity of their data structures, value ranges, and/or memory 
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allocations. Second, currently, we only trace the program by feeding it valid and executable inputs 

which will not terminate the program or throw errors. This might make the model less capable of 

capturing program termination and error-throwing behaviors. 

External Validity At present, TRACED supports only the C programming language. This 

limitation is due to the reliance on the capabilities of the tracer used to log the execution history, 

which may not be readily available or equally efective for other programming languages. In order 

to extend TRACED’s applicability, it is necessary to ensure that the tracer employed can 

accurately and consistently capture the required information across diferent languages. Adapting 

TRACED to multiple languages would require the development or adaptation of tracers that can 

efectively handle the intricacies of each language and produce comparable results, enabling a 

consistent analysis of code behavior across a broader range of programming languages. 

4.9 Conclusion 

We propose TRACED, an execution-aware pre-trained model that jointly learns the static 

and dynamic code properties, to address the limitation of existing, statically pre-trained code 

models. The evaluation empirically reveals that TRACED is more efective in estimating code 

execution statically than statically pre-trained models. TRACED also successfully transfers 

execution awareness to code understanding tasks. 
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Abstract 

In this chapter, we present a challenging code reasoning task: vulnerability detection. Large 

Language Models (LLMs) have shown promising results in natural-language and math reasoning, 

but state-of-the-art (SOTA) models reported only 54.5% Balanced Accuracy in our vulnerability 

detection evaluation, even those models pre-trained on large amounts of source code. Our error 

analysis on LLM responses shows that the models struggle to reason about the code semantics 

relevant to identifying vulnerabilities, especially subtle semantic diferences caused by small 

textual changes. We explored prominent models and training settings to understand their efects 

on vulnerability detection performance — including better prompts, larger models, more 

pre-training data, and fne-tuning — but none led to signifcant improvements. This raises the 

question of whether simply scaling training data and model size will allow us to “solve” complex 

code reasoning tasks like vulnerability detection, or if a fundamental shift in modeling and 

training techniques is required. We also explored adding domain knowledge to prompts; although 

it helped certain models understand some code semantics, vulnerability detection requires 

multi-step reasoning, and these models still failed in steps, such as reasoning about variable 
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relations. Our results suggest that new models, new training methods, or more execution-specifc 

pretraining data may be needed to conquer vulnerability detection. We speculate that 

auto-regressive pre-training on source code may not efectively extract code semantics, especially 

on the current pretraining mixtures, in which execution data is scarce. Success on vulnerability 

detection as a code reasoning task can beneft many areas of software engineering such as 

debugging, test input generation, and program repair. Our code and data are available at 

https://doi.org/10.6084/m9.figshare.27368025. 

5.1 Introduction 

Thousands of new software vulnerabilities are discovered each year, costing users and 

companies millions of dollars [37]. This makes vulnerability detection critically important for 

software security. Since Devign in 2019 [64], many deep learning approaches have been proposed 

to predict the presence of vulnerabilities, but model performance has not breached 70% F1 score 

on realistic datasets [7]. In this chapter, we show that though existing LLMs achieve impressive 

results on math, natural language, code reasoning and code generation tasks [48, 9, 19, 6] they 

struggle to detect vulnerabilities (Section 5.2). We show that vulnerability detection is a complex 

code reasoning challenge, requiring both multi-step analysis and an accurate understanding of 

code semantics. This chapter makes the case that vulnerability detection presents a compelling 

new target task for the ML community; solving it could signifcantly impact related software 

engineering tasks, such as debugging, test input generation, and program repair, thereby 

enhancing developer productivity. Furthermore, improving LLM’s ability to reason about code 

and identify vulnerabilities could potentially drive progress in broader reasoning tasks. 

As shown in Figure 5.3, to detect a vulnerability, a developer frst needs to accurately locate 

the statements relevant to a potential vulnerability. Second, a developer must understand the 

semantics of those relevant statements, which requires domain knowledge, such as recognizing 

bounds/NULL checks and understanding the efects of string, pointer, and arithmetic operations. 

Sometimes only a single operator distinguishes vulnerable and non-vulnerable versions of code, 

https://doi.org/10.6084/m9.figshare.27368025
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1 get_next_file(FILE *VFile, char *ptr) { 
2 char *ret; 
3 ret = fgets(ptr, PATH_MAX, VFile); 
4 if (!ret)return NULL; 
5 
6 - if (ptr[strlen(ptr) - 1] == '\n') 
7 - ptr[strlen(ptr) - 1] = '\0'; 
8 + size_t len = strlen (ptr); 
9 + if (len > 0 && ptr[len - 1] == '\n') 

10 + ptr[len - 1] = '\0'; 
11 return ret; 
12 } 

1 mrb_class_real(struct RClass* cl) { 
2 if (cl == 0) return NULL; 
3 cl->super = NULL; 
4 // ... 
5 while ((cl->tt == MRB_TT_SCLASS) || (cl->tt == 

MRB_TT_ICLASS) ,→ 
6 ) { 
7 cl = cl->super; 
8 + if (cl == 0) return NULL; 
9 } 

10 return cl; 
11 } 

Figure 5.1. Bufer Overfow (BOF). To Figure 5.2. Null-Pointer Dereference (NPD). To 
detect this vulnerability in the vulnerable detect this vulnerability in the vulnerable ver-
version, the model/developer takes several sion, the model/developer takes several reasoning 
reasoning steps: (step 1) identify the BOF- steps: (step 1) identify the relevant statements, 
relevant statements, e.g., bufer allocation e.g. the assignments cl->super = NULL in line 3
in line 3 and access in line 6; (step 2) un- and cl = cl->super in line 7, and dereference 
derstand that the allocated bufer may be of cl in line 5; (step 2) understand that in line 3, 
empty depending on user input and that cl->super is set to NULL; (step 3) connect the 
strlen(ptr) returns 0 in line 6 if the bufer facts, recognizing that after assigning cl to NULL 
is empty; (step 3) connect the facts, recog- in line 7, it will be dereferenced when the loop con-
nizing that if the bufer is empty, then line 6 dition is evaluated in line 5, causing a NPD. In the 
will access index -1, causing a BOF. In the patched version, the model/developer should rec-
patched version, the model/developer should ognize in step (2) that line 8 checks if cl is NULL 
recognize in step (2) that line 9 checks the and returns safely, thus there is no vulnerability. 
length of the bufer before accessing it, and 
therefore, step 3 concludes that this vulner-
ability is not exploitable. 

Figure 5.3. Examples of vulnerability detection as a complex code reasoning task. Difed lines 
(+/-) show the lines changed to patch the vulnerability. 

and efective vulnerability detection requires understanding these nuances of program semantics. 

Finally, the developer must logically connect the individual facts about the statements to infer 

whether a vulnerability exists. This last step requires reasoning about the ranges of values and 

the temporal relations of symbolic variables, and then comparing them to the application’s 

security policy, which is often implicit. 

These steps are challenging for LLMs, both individually and in combination. We studied 14 

SOTA LLMs and 7 prompting methods on SVEN [21], a high-quality, real-world dataset 
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consisting of 386 vulnerable functions and their corresponding fxed versions, covering 772 

programs. We found that all models and prompts performed close to random guessing (50-55% 

Balanced Accuracy) (Section 5.2). Even GPT-4, a SOTA model, couldn’t distinguish vulnerable 

code from its fxed version for 67.4% cases. 

After manually analyzing 300 of the LLM responses (Section 5.3), we found errors occurring 

at all three steps of the reasoning process. For instance, in step 1, localization, the models 

frequently (50% of inspected functions) failed to recognize bounds or NULL checks, resulting in 

false positives. Explicit marking of bounds checks is easily done by humans but seems to be 

difcult for LLMs to recognize. In step 2, LLMs misinterpreted string, pointer, and integer 

operations in 10%, 6%, and 8% of functions, respectively. Understanding bounds/NULL checks 

and the operations requires a precise understanding of code execution semantics, which LLMs 

generally struggle with [19]; our results confrm this fnding and further indicate which structures 

were most challenging. We attribute the models’ lack of understanding of code semantics, even 

after using various prompting methods, to two key factors: (1) the models may have limited 

exposure to execution data during pre-training, which restricts their ability to learn semantics 

directly – although LLMs might acquire some semantic understanding indirectly from simple 

executions aligned with code text, or developer’s discussions about semantics; and (2) the current 

autoregressive pre-training methods face inherent difculty of learning execution semantics from 

code text alone. This is likely why we observe that scaling up model size or dataset volume, and 

performing fne-tuning, did not signifcantly improve performance (Sections 5.3.1 and 5.3.2); since 

the necessary data are not in the dataset, it is unlikely that LLMs can learn this complex 

reasoning via scaling alone. Annotating code semantics in prompts reduced some of these errors in 

certain models (Section 5.3.3), but determining vulnerabilities require a multi-step analysis. There 

are errors in other reasoning steps can further prevent the detection. We show that in step 3, 

LLMs frequently failed at multi-step logical reasoning, leading to inconsistent or non-sequential 

inferences in 9% of responses. 
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To the best of our knowledge, this chapter is the frst to utilize vulnerability detection to 

systematically explore the capabilities of existing LLMs to reason about complex code properties. 

Ullah et al. [51] compared GPT-4’s responses with human-written vulnerability summaries using 

metrics like BLEU, ROUGE, and GPT-4 evaluations, but did not delve into the specifc failure 

modes which occurred in responses. Yu et al. [58] and Nong et al. [38] examined GPT-4 and 

GPT-3.5’s responses about vulnerabilities but did not perform systematic studies on a set of 

models, and on the impact of model sizes, training data, training methods, and adding domain 

knowledge. We classifed the errors based on the challenges of reasoning steps, resulting in 

categories which are more fne-grained and actionable; we explored mitigating a specifc type of 

error using a prototype with CoT-Annotations, as discussed in Section 5.3.3. 

In summary, we make the following contributions: 

(1) We clarify vulnerability detection as a complex reasoning challenge; 

(2) We demonstrate that current SOTA LLMs severely underperform in vulnerability detection, 

achieving only 50-55% balanced accuracy at best; 

(3) Through manual analysis of hundreds of LLM responses, we reveal that LLMs struggle with 

all stages of reasoning, particularly in understanding semantics of statements involving 

bounds/NULL checks, string operations, and pointer handling, which contributes signifcantly to 

their poor performance; 

(4) We show that these reasoning failures and low performance cannot be easily mitigated by 

increasing model size, improving training data, and applying fne-tuning, even when the model is 

provided with domain-specifc knowledge. 

The fact that vulnerability detection exposes the limitations in current models’ abilities to 

reason about vulnerabilities, coupled with the availability of well-defned vulnerability data, 

makes vulnerability detection an ideal benchmark for evaluating and challenging LLM reasoning 

capabilities. 



129 

5.2 Can LLMs Efectively Detect Vulnerabilities? 

Prompts: We used the baseline prompting methods including Basic (zero-shot) [16] and 

In-context (n-shot) [30, 63] prompts. We used a system prompt to set the context and instructions 

including the vulnerability defnition [35] and the program source code (see Section 5.A for 

details). 

We designed three additional prompting methods that leverage the metadata available in 

vulnerability datasets to encourage reasoning and provide the domain knowledge to the model, 

namely: (1) In-context examples from contrastive pairs (Contrastive), which uses pairs before and 

after a bug-fx as in-context examples, with the goal of instructing the model the fne-grained 

diferences which caused the bug, (2) Chain-of-Thought from CVE descriptions (CoT-CVE), 

which uses CVE bug reports [10] from the Big-Vul dataset [13], prompting the model to respond 

with the explanations of vulnerability, and (3) Chain-of-Thought from static analysis 

(CoT-StaticAnalysis), which adapts vulnerability proofs output by a static analyzer [3] as 

reasoning steps for the example response, conditioning the model to reason step-by-step. We 

obtained the proofs from the D2A dataset [62] (see Section 5.A for details). 

Prompt 
Basic Random Embedding 

Contrastive CoT-CVE CoT-StaticAnalysis Random-guess baseline 

Figure 5.4. Vulnerability detection performance. Bar height shows the average performance of 
three random seeds and error bars show standard deviations; stars ( ) mark the best-performing 
prompt for each model. 
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SVEN HumanEval CruxEval GSM8k CSQA 

Model (params) Vuln. detection Code gen. Code execution Math NL reasoning 

StarChat 50.9 - - - -
LLAMA 2 (34b) 51.2 22.6 - 42.2 -
StarCoder (15.5b) 52.2 45.8 34.2 - -
Mistral (7b) 51.4 30.5 34.3 36.5 62.5 
Mixtral (8x7b) 51.9 40.2 40.5 58.4 86.7 
Code LLAMA (34b) 52.6 48.8 42.4 - -
WizardCoder (33b) 52.4 59.8 43.4 - -
MagiCoder (7b) 50.9 70.7 44.4 - -
StarCoder2 (16b) 54.5 46.3 47.1 - -
GPT-3.5-turbo 51.8 64.9 49.4 57.1 85.5 
DeepSeek (33b) 52.1 69.2 49.9 - -
GPT-4-turbo 52.9 87.1 68.7 87.1 95.3 
Gemini 1.0 Pro 52.1 67.7 - 86.5 84.7 
StarChat2 53.6 71.3 - - -

Table 5.1. Performance on vulnerability detection vs. NL/math reasoning, code generation, and code 
execution. Sources for code, math, and NL reasoning performance are cited in Section 5.C. 

Models: We evaluated 14 LLMs which are the SOTA in code generation, based on several 

surveys [61, 29] and the HumanEval leaderboard [42] (as of March 2024). The models include 

LLAMA 2 [49], Code LLAMA [44], StarCoder [28], StarChat [50], StarCoder2 [31], 

StarChat2 [22], Mistral [24], Mixtral [25], MagiCoder [54], Wizardcoder [32], DeepSeek-Coder[20], 

GPT-3.5 [39], GPT-4 [40], and Gemini 1.0 Pro [18]. See Section 5.B for details. 

Benchmark and Metrics: We used the SVEN dataset [21], which contains 772 vulnerable and 

fxed functions from real-world C/C++ projects (average length = 168 lines). Existing 

vulnerability datasets contain a lot of noise; SVEN contains vulnerabilities selected from multiple 

benchmarks, and are reported to be 93% accurate [11]. Considering that the commonly used F1 

score can bias towards models which predict vulnerable more often [63], we used Balanced 

correctvul correctnvul Accuracy [1] (defned as ( + )/2) to evaluate the models. examplesvul examplesnvul 

Results: Figure 5.4 shows the performance of the baseline methods and our proposed prompts. 

While our new prompts slightly improved the best-case performance for 11 out of 14 models, with 

Contrastive prompts enhancing 8 out of 14, none of the models or prompts exceeded the 

random-guessing baseline (Balanced Accuracy = 50) by more than 5% Balanced Accuracy. In 
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doubt of whether the complexity of the real-world code is the main challenging factor, we studied 

simple code examples (25 lines per function on average) from the CWE and SARD 

databases [35, 36] and found that the models still did not predict simple functions correctly, 

reporting 42-67% Balanced Accuracy across all the models (see Section 5.D). Table 5.1 compares 

the models’ vulnerability detection performance with their performance in other domains. While 

new models have made steady advances in code generation [6], code execution [19], NL 

reasoning [48], and math reasoning [9], their vulnerability detection performance has not 

increased in step, remaining close to the random-guess baseline. This result implied that the 

until-now successful strategies of scaling model size and training data have not yet proven to be 

sufcient to solve vulnerability detection; to further confrm this, we investigated further in 

Sections 5.3.1 and 5.3.2. 

Table 5.2. Models’ abilities to distinguish pairs of vulnerable and non-vulnerable examples. Cell values 
display the number and percentage of pairs in each category. 

Distinguished 
Model Can’t Distinguish Both Correct Both Wrong 

StarChat 86.1% 7.9% 6.1% 
DeepSeek 82.5% 6.3% 11.2% 
StarCoder 82.1% 12.5% 5.4% 
GPT-3.5-turbo 80.9% 11.3% 7.8% 
LLAMA 2 76.5% 15.6% 8.0% 
MagiCoder 75.2% 11.9% 12.9% 
Mixtral 67.8% 18.3% 13.9% 
GPT-4-turbo 67.4% 18.9% 13.7% 
Gemini 64.4% 19.1% 16.5% 
Mistral 61.8% 20.6% 17.6% 
StarChat2 61.4% 21.0% 17.6% 
StarCoder2 57.5% 19.0% 23.5% 
Code LLAMA 57.3% 22.3% 20.4% 
WizardCoder 55.0% 23.8% 21.1% 

Average 69.7% 16.3% 14.0% 

Table 5.2 presents our results on the models’ capabilities of distinguishing pairs of vulnerable 

code and its fxed version. In the table, under Column Can’t Distinguish, we show that, on 

average across all the models, 69.7% of pairs could not be distinguished, indicating that the 

models do not understand the nuanced semantics of the vulnerability. Some models/prompts were 
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better than average, but at best, 55.0% of pairs could not be distinguished. The Both Correct and 

Both Wrong columns indicate that the models predicted both versions correctly in some instances 

(16.3% of pairs), but there were also cases (14.0% of pairs) where the models predicted both 

versions incorrectly. 

5.3 Why do LLMs Fail to Reason About Vulnerabilities? 

We manually inspected 300 vulnerable predictions (covering 100 programs) from 14 models, 

regarding the vulnerability reasoning steps, including locating and understanding the semantics of 

statements related to vulnerability decisions, as well as the logical reasoning that can integrate 

variable values and relations, and compare them with the security policy. To reduce subjectivity, 

our manual inspection used independent ratings from three authors, following Islam et al. [23], and 

adopted best practices for inductive coding [45]. See Section 5.E.3 for the details of our protocol. 

Does the response contain an error? 
No Yes 

Figure 5.5. Error categories observed in responses from all LLMs. Bar width shows the number 
of responses that contained the category of error. One response can contain more than one type of 
error. 

Figure 5.5 summarizes the errors. The results show that LLMs had some successes in 

reasoning, with 44% of responses containing no observed errors; however, still more than half of 

the responses contained an error in at least one step. LLMs made errors on localizing and 

understanding individual statements for 43% examples; this causes them to make faulty inferences 

about the efects of the code and fag potential vulnerabilities in safe code. LLMs also made 
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Table 5.3. Error analysis from 300 responses covering 100 programs. We analyzed the errors 
manually using the rubric and inter-rater agreement procedure detailed in Section 5.E. 

Reasoning step Error Count 

(1,2) Localizing and 
understanding statements 
related to vulnerability 

Misunderstood Bounds/NULL check 
Misunderstood string operation 
Misunderstood arithmetic operation 
Misunderstood pointer operation 
Misunderstood alloc/free operation 
Misunderstood index operation 
Misunderstood execution order 
Improper assumption 
Misunderstood syntax 

80/159 (50%) 
3/29 (10%) 
8/96 (8%) 
9/147 (6%) 
4/81 (5%) 
1/60 (2%) 

11 
8 
6 

Total 125 

(3) Logical reasoning Faulty implication (⇒) 
Inconsistent (⊥) 

14 
14 

Total 28 

Cross-cutting errors Hallucination 
Memorization 
Repetition 

15 
11 
5 

Total 31 

cross-cutting errors such as hallucination and repetition 10% of the time and made incorrect 

logical inferences 9% of the time. 

The LLMs frequently made errors related to several specifc code structures, shown in 

Table 5.3. For example, out of 159 responses explaining bounds/NULL checks, 80 (50%) were 

incorrect. The semantics of bounds/NULL checks are critically important for determining 

whether several pertinent vulnerabilities exist, including bufer overfow, null-pointer dereference, 

and use after free. Such checks often follow predictable code patterns and thus are relatively 

simple for developers and static analysis tools to identify — we used static analysis to recognize 

them in Section 5.3.3 — however, the LLMs often failed to recognize these patterns. In addition, 

the models face challenges of understanding the semantics of operations; for example, the models 

incorrectly interpreted 10% string operations and 8% of arithmetic operations, which are 

necessary for reasoning about bufer overfow and integer overfow vulnerabilities. 
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Figure 5.6. Missed Bounds/NULL check. 

In Figure 5.6, StarChat reported that there is an unchecked null-pointer dereference at line 5 

(p->lineinfo[oldpc]). However, it overlooked the safety check at line 2, where null values for 

p->lineinfo are handled safely. Figure 5.7 provides an example of a Misunderstood arithmetic 

operation error. GPT-4 correctly identifed the bounds-check at line 6, which had been added by 

developers to prevent overfows [34]. However, the LLM failed to reason about the calculation of 

the argument value to AllocChunk at line 9. Given the upper bound of 0x7fff for nSamples+1 

and nPatches+1, even the maximum values would not cause an overfow in an unsigned integer 

(0x7fff ∗ 0x7fff ∗ 8 = 0xfff80008), so the LLM’s alert is a false positive. 

As a follow-up to the error analysis, we conducted a form of natural experiment [55] to 

compare various LLMs and assess whether prominent training strategies improved vulnerability 

performance. This study design enabled us to evaluate each training strategy independently while 

controlling other variables. We compared models of diferent sizes (Section 5.3.1) and models 

trained with varying data and training methods, including increased training data volume, code 

vs. NL training data, instruction fne-tuning, and adapter fne-tuning (Section 5.3.2). We also 

investigated the use of external tools (Section 5.3.3) to add domain knowledge targeting the types 

of reasoning errors we found in Table 5.3. 
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Figure 5.7. Misunderstood arithmetic operation. 

5.3.1 Does Model Size Matter? 

We evaluated several models which released diferent sizes: LLAMA 2 (7b, 13b), Code 

LLAMA (7b, 13b, 34b), Mistral 7b vs. Mixtral 8x7b, and DeepSeek-Coder (1.3b, 6.7b, and 33b). 

Figure 5.8 shows that model performance did not signifcaly improve by scaling up the model size, 

and we found that there was no statistical correlation between model size and performance 

(R2 = 0.02, p = 0.72). We manually analyzed the responses using the methodology in Section 5.3 

and found that all models had error rates similar to those shown in Figure 5.5, although larger 

models were better at following in-context prompts. For example, Code LLAMA 7b, often 

analyzed the in-context examples instead of the queried example; this error happened less 

frequently with Code LLAMA 13b, and not at all with Code LLAMA 34b. This aligns with 

previous results [52] showing that in-context learning is an emergent property of larger models. 
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Model class 
Mistral DeepSeek-Coder 
Code LLAMA LLAMA 2 
Regression 

Figure 5.8. Larger models did not improve on vulnerability detection. 

5.3.2 Do Model Training Data & Methods Matter? 

Figure 5.9a (top), General-purpose vs. code training data: Models trained mainly on 

natural language may lack the knowledge of code seen in models which have been fne-tuned on 

code. This raises the question: do models specialized for code outperform general-purpose models? 

To explore this, we compared LLAMA 2, designed as a general-purpose chat assistant [49], 

against Code LLAMA, which was initialized from the base weights of LLAMA 2 and further 

fne-tuned on code [44]. Figure 5.9a (top) shows that code-specialized training did not 

substantially improve Code LLAMA’s vulnerability detection capability. 

Figure 5.9a (bottom), Training on more data: HuggingFace’s Bigcode team released 

StarCoder and its updated version, StarCoder2, with the primary diference being that 

StarCoder2 trained on more than twice as much code [31]. This setup provides a relatively 

controlled environment to assess the impact of this additional training data. Figure 5.9a (bottom) 

indicates that scaling up the dataset resulted slightly improved StarCoder2’s vulnerability 

detection capability, but yielded only a 4% improvement. 
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Dataset Training method 

Less data General-purpose Base Prompting 
More data Code Instruct Fine-Tuning 

(a) Data volume & modality (b) Instruction fne-tuning (c) Adapter fne-tuning

Figure 5.9. Expanding the training dataset and incorporating fne-tuning had minimal impact on 
vulnerability detection capability. 

Figure 5.9b, Instruction fne-tuning : Instruction fne-tuning can improve the truthfulness 

and relevance of responses [41], as well as performance and generalization [8]. This leads us to ask: 

do instructed models perform better than their base counterparts? We compared the base 

versions of DeepSeek Coder, StarCoder2, and Code LLAMA against their instruction fne-tuned 

counterparts, namely WizardCoder, StarChat2, and Code LLAMA-Instruct/MagiCoder 

respectively, and found no substantial diference in performance (Figure 5.9b), indicating that 

instruction fne-tuning did not improve vulnerability detection performance, even though our 

vulnerability detection prompts are tailored for instruction-tuned models. 

Figure 5.9c, Adapter fne-tuning: We fne-tuned the StarCoder2 7b model using the 

vulnerability dataset PrimeVul [11] (the cleanest supervised dataset large enough for fne-tuning) 

and compared it with the base 7b model using the Basic prompt on SVEN. We evaluated the 

models on balanced and imbalanced label distributions, following Chakraborthy et al. [4]. 

Figure 5.9c shows that fnetuning did not substantially improve the model’s performance in either 
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case; the fne-tuned model performed worse on balanced data and only 1.2% better on imbalanced 

data. 

5.3.3 Does Additional Domain Knowledge Help? 

CoT-Annotations prompt for the source code in Figure 5.2 

Code Explanation: The pointer cl is passed as parameters in this function, which could be null. In 
line cl->super = NULL, the pointer cl->super is assigned to NULL. In line while ((cl->tt == 
MRB TT SCLASS)..., the pointer cl is dereferenced. The function has a NULL check in line if (cl 
== 0) return NULL; for the pointer cl. 
Instructions: For the Query Example only, think step-by-step using these steps, then give an answer 
based on the Code Explanation. Assume pointers which are passed in will not cause a null-pointer 
dereference. 
1. identify which locations pointers are likely to be null.
2. identify which of these are dereferenced.
3. identify which of these dereferences of potentially-null pointers are checked and handled. Filter
these out.
4. if any unchecked dereferences remain, then the function is vulnerable. Otherwise, the function is
not vulnerable.

Example response 

Reasoning: The function dereferences the pointer cl without checking if it is NULL. cl may be 
assigned to NULL in the line cl = cl->super. If cl is NULL, the function will crash when it tries 
to access the feld cl->tt in the loop condition. 
Answer: Yes, the function is buggy. 

Figure 5.10. Example of our CoT-Annotations prompt using the NPD vulnerability from Figure 5.2. CoT-
Annotations uses static analysis to provide information to the model (top) and provides reasoning example 
responses to encourage reasoning (bottom). We annotate null assignments, parameters, and dereferences to 
help the model to detect potential null-pointer dereferences and annotate null-checks to prevent the model 
from making false positive predictions. 

Table 5.3 indicates that one of the important challenges that prevented LLMs from detecting 

vulnerabilities is their incapability of understanding bounds/NULL checks and pointer operations. 

Thus, we developed Chain-of-Thought with Annotations (CoT-Annotations), shown in 

Figure 5.10. We introduced an external static analysis tool which annotates the code to highlight 

possible NULL assignments to pointers, NULL checks, on pointers, and dereferences of pointers. 

These annotations provide the exact information that defnes the vulnerability and that a domain 
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expert would use to identify NULL-pointer dereference vulnerabilities. We integrated such 

knowledge into the prompt and evaluated performance on detecting Null-Pointer Dereference 

(NPD) vulnerabilities for the models we studied above, as a case study. As a quality measure, we 

manually verifed the static analysis output and excluded incorrect annotations caused by 

heuristic errors. 

Prompt 
Without additional knowledge With additional knowledge 

(a) Reasoning errors related to bounds/NULL
checks.

(b) Vulnerability detection performance.

Figure 5.11. Domain knowledge is somewhat helpful for one step but not much for overall perfor-
mance. Some models, e.g., CodeLLAMA, respond to the annotated knowledge better: from a case 
study on NPD vulnerabilities. 

By analyzing a sample of 198 responses1 with/without annotations, we observed that 

CoT-Annotations reduced the errors of bounds/NULL checks recognition by 15-70% for Code 

LLAMA, MagiCoder, and Mistral, shown in Figure 5.11a; however, these models still missed 

23-67% of bounds checks. We also observed that the improvement of understanding

bounds/NULL checks did not signifcantly improve the models’ performance (see Figure 5.11b). 

We speculate that this is because there are other blocking issues such as logical reasoning about 

relations of variables. 
1This sample represents the intersection of vulnerable responses across all six models, with a maximum of 25 

responses per model. We used the error categories established in Section 5.3, with each rater analyzing one-third of 
the responses (each response was reviewed by a single rater due to time constraints). 
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5.4 Related Work 

Recent studies have initiated investigation into the usage of LLMs for vulnerability detection, 

using zero-shot prompting [43, 16], in-context learning [17, 30, 5], and fne-tuning [46, 59, 57]. 

Several papers have utilized chain-of-thoughts (CoT), such as “Let’s think 

step-by-step” [27, 14, 47], multi-step prompts [51, 58], and generic information such as CFG, 

DFG, PDG, and API calls [60, 38, 26, 51]. In this work, we studied the most common prompting 

methods and proposed four novel prompt approaches tailored for vulnerability detection, 

integrating information from bug-fx commits (contrastive pairs), CVE descriptions (CoT-CVE), 

static analysis reports (CoT-StaticAnalysis), and domain knowledge annotations 

(CoT-Annotations). We further studied the LLMs’ capabilities to distinguish buggy and patched 

versions of code and studied the reasoning errors in their responses. 

Several recent papers have analyzed errors in LLM-generated vulnerability detection 

responses. Ullah et al. [51] used BLEU, ROUGE, and GPT-4 to automatically compare GPT-4’s 

reasoning summaries with human-generated ones. Yu et al. [58] and Nong et al. [38] examined 

82-100 responses from GPT-4 and GPT-3.5, supporting our fndings that the models struggled

with correctness, logic and consistency in general. However, existing studies do not match the 

depth and breadth of ours. Our error classifcations provide more actionable and detailed 

categories, enabling us to identify specifc code structures and LLM weaknesses (see Table 5.3). 

Additionally, we analyzed factors such as model size, training data, and training strategies, 

providing cause for concern about future improvements from model scaling. To our knowledge, 

our study is the most comprehensive manual analysis of LLMs for vulnerability detection, 

including 14 models and manually analyzing 300 LLM responses with a rigorous multi-rater 

agreement protocol. 

5.5 Conclusion 

In this chapter, we have show that vulnerability detection is complex, multistage reasoning 

task that current LLMs struggle to solve. We conducted a thorough study to show that the SOTA 
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models and prompts performed only slightly better than random guessing. None of the model 

advancements we explored led to signifcant improvements, including increasing model size, 

expanding training data, and instruction/adapter fne-tuning. The models particularly struggled 

to distinguish between vulnerable and fxed versions of code, where small textual diferences cause 

large changes in semantics. We demonstrated that external tools and domain knowledge helped 

somewhat with single-step reasoning, but did not signifcantly improve the models’ performance, 

which depends on accurate multi-step reasoning. Our fndings bring concerns about further 

research in this area, raising the question of whether auto-regressively pre-trained LLMs are a 

good ft for tasks which require deep understanding of code semantics. We suggest that a 

fundamental shift in modeling and training methods may be necessary in order to overcome the 

reasoning failures of current LLMs. We believe that solving code reasoning in vulnerability 

detection could help address many other challenging tasks in software engineering, such as 

debugging, code execution prediction, test input generation, and program repair. We hope that 

this chapter laid out some key insights and motivation for the machine learning community to 

solve this important challenge. 
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5.A Appendix: Vulnerability detection prompts 

Basic (zero-shot) prompting [16]: We frst designed a system prompt to set the context: “I 

want you to act as a vulnerability detection system”, along with natural-language instructions: 

(1) Basic query : “Is the following function buggy? Please answer Yes or No.” (We also tried “Is 

the following function vulnerable?”; however, our pilot study shows that it did not perform as 

well.) (2) CWE list : This prompt starts with “Does the following function contain one of the 

following bug types?”, followed by a fxed list of bug types, e.g., “CWE-190: Integer Overfow”; 

(3) Q/A: Begin the query with “Question:” and begin the model’s response with “Answer:”. This 

conditions the model to respond in a question-answering mode. 

In-context (n-shot) prompting[30, 63]: In this prompt, we provide examples of inputs and 

responses for in-context learning [2]. The in-context examples condition the model to reply in the 

same format as the example responses [56]. The selection of in-context examples can impact the 

performance. We studied three settings: (1) randomly selected examples, (2) the examples that 

had similar embeddings to the query example, and (3) the examples from contrastive pairs (see 

below for details). 

In-context prompting based on contrastive pairs: We formed contrasting pairs of 

in-context examples by providing the vulnerable version of the code (before the bug-fxing 

commit) and the fxed version (after the commit) as in-context examples in the same prompt. 

Since these two versions of the source code difer primarily in the portion related to the bug-fx, 

our intention is that this prompt template would highlight the cause of the bug and instruct the 

model to learn that the small diferences in code can lead to diferent labels. 

In-context prompting based on CoT from CVE descriptions: We designed 

“chain-of-thought” prompts by providing intermediate reasoning steps which lead to the answer, 

inspired by Wei et al. [53]. We use in-context examples from the Big-Vul dataset [13], which 

includes the CVE bug reports. For vulnerable examples, we used the default in-context query and 

provide the chain-of-thought response. To produce such response, we adapt the descriptions in 
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these bug reports to describe how the bug manifests. For example, CVE-2017-9211 [33] describes 

the vulnerability, including the symptoms, attack surface, and variable involved: 

The crypto skcipher init tfm function in crypto/skcipher.c in the Linux kernel through 

4.11.2 relies on a setkey function that lacks a key-size check, which allows local users 

to cause a denial of service (NULL pointer dereference) via a crafted application. 

We use this description as the CoT response and append “Therefore, the example is buggy” to 

complete the example response. For non-vulnerable examples, we provide the default in-context 

example query/response. 

In-context prompting based on CoT from static analysis: We also used the output buggy 

paths reported by static analysis tools to prepare the chains of thought prompt. The buggy path 

consists of a list of statements that can lead to the bug. We use in-context examples from the 

D2A dataset [62], which lists buggy paths from the Infer static analyzer [12] for several 

open-source C++ projects. We convert the buggy paths to natural language descriptions and use 

them as the response. This is an example CoT response for a bufer overfow vulnerability: 

1. A buffer buf of size 10 is allocated at line 1. 

2. An index i is initialized to a value in the range [0, 100] at line 2. 

3. The index i is used to access buf at line 3. This may exceed the bounds of buf. 

We append “Therefore, the example is buggy” to complete the example response. For 

non-vulnerable examples, we provide the default response. 

5.B Appendix: Models 

We used the model sizes shown in Table 5.4 and the text generation parameters shown in 

Table 5.5 for our experiments. The model IDs are documented in our data package. 
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Table 5.4. 14 models we studied. 

Model Parameters Context Length 

GPT-4 [40] - 128k 
Gemini 1.0 Pro [18] - 32k 
GPT-3.5 [39] - 4k 
Mixtral-MoE [25] 45B 8k∼128k 
Code LLAMA [44] 7B, 13B, 34B 16k∼100k 
LLAMA 2 [49] 7B, 13B 4k 
WizardCoder [32] 33B 2k 
DeepSeek-Coder [49] 1.3B, 6.7B, 33B 4k 
StarChat2 [22] 15.5B 16k 
StarCoder2 [22] 15.5B 16k 
StarChat [50] 15.5B 8k 
StarCoder [28] 15.5B 8k 
MagiCoder [54] 7B 16k∼100k 
Mistral [24] 7B 8k∼128k 

Table 5.5. Text generation parameters we used. 

Parameter HuggingFace OpenAI Google 

Top-p 
Temperature 
Max. tokens generated 

0.9 
0.1 
512 

1.0 
0.1 
512 

1.0 
0.1 
512 

5.C Appendix: Benchmarks for other domains 

We gathered the benchmark performance results for Table 5.1 from public benchmarks and 

from the papers associated with each model: 

• CruXeval: https://crux-eval.github.io/leaderboard.html 

• HumanEval: https://paperswithcode.com/sota/code-generation-on-humaneval 

• GSM8k: reported in the models’ papers [49, 24, 25, 39, 40, 18]. 

• CSQA: reported in the models’ papers [24, 25, 39, 40, 18]. 

https://crux-eval.github.io/leaderboard.html
https://paperswithcode.com/sota/code-generation-on-humaneval
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Integer Overfow 

1 int determineFirstQuarterRevenue() 
2 { 
3 
4 // Variable for sales revenue for the quarter 
5 float quarterRevenue = 0.0f; 
6 
7 short JanSold = getMonthlySales(JAN); /* Get sales in January */ 
8 short FebSold = getMonthlySales(FEB); /* Get sales in February */ 
9 short MarSold = getMonthlySales(MAR); /* Get sales in March */ 

10 
11 // Calculate quarterly total 
12 short quarterSold = JanSold + FebSold + MarSold; 
13 
14 // Calculate the total revenue for the quarter 
15 quarterRevenue = calculateRevenueForQuarter(quarterSold); 
16 
17 saveFirstQuarterRevenue(quarterRevenue); 
18 
19 return 0; 
20 } 

Figure 5.12. A simple integer overfow example collected from CWE database. The summation 
of three short int numbers can be more than the value of the maximum short int number, which 
will introduce integer overfow vulnerability. 

5.D Appendix: Simple CWE examples

Figure 5.12 shows a simple integer overfow vulnerability example. The CodeLLAMA model 

could detect this vulnerability. The response of the CodeLLAMA model is shown in Figure 5.13. 

The performances of all models on these simple examples are shown in Table 5.6 

Example response 

No, the function does not contain any of the following vulnerability types: 
* CWE-190: Integer Overfow
* CWE-476: Null Pointer Dereference
* CWE-125: Out-of-bound Read
* CWE-787: Out-of-bound Write
* CWE-416: Use After Free

Figure 5.13. Code LLAMA’s response to the simple example in Figure 5.12. 
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Table 5.6. The performance of the studied models on simple CWE examples. 

Model Performance 

GPT-4 65.78 
Gemini 1.0 Pro 50.87 
GPT-3.5 56.14 
Mixtral-MoE 61.40 
Code LLAMA 61.40 
LLAMA 2 46.49 
WizardCoder 51.75 
DeepSeek-Coder 66.67 
StarChat2 55.26 
StarCoder2 50.87 
StarChat 50.00 
StarCoder 41.52 
MagiCoder 62.28 
Mistral 57.01 

5.E Appendix: Error analysis methodology 

5.E.1 Inter-rater agreement 

We frst analyzed 50 examples to create detailed error categories for each reasoning step. All 

three raters independently identifed errors in the LLM responses, refning the protocol after 

1processing 1⁄3, ⁄2, and all of the data. We added new error categories when needed, and merged 

similar categories after analysis concluded. We measured inter-rater agreement using Fleiss’ kappa 

(κ) [15], achieving 0.78 with 86% agreement. We resolved disagreements by majority vote, 

followed by discussion for the fnal categorization. After the categories were set in Section 5.3, we 

used one rater to analyze the responses reported in Sections 5.3.1 to 5.3.3. 

5.E.2 Error analysis UI 

Figure 5.14 is a screenshot of the user interface (UI) used by the raters for error analysis. The 

interface features a display of the source code (center), the model’s response and explanation 

(bottom left), and metadata about the vulnerability (top left). Additionally, it provides a 
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Figure 5.14. Error analysis user interface. 

confgurable set of checkboxes to select one or more error categories, along with a section for 

free-form text notes (bottom right). We believe that this tool could be valuable for future 

large-scale manual analyses of LLM responses, which is why we have included it in our data 

package. 
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5.E.3 Error categories 

Table 5.7 shows the defnitions for error categories, which we developed in our manual 

analysis. 
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Table 5.7. Defnitions of Model Reasoning Errors. 
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CHAPTER 6. CLOSING THE GAP: A USER STUDY ON THE 

REAL-WORLD USEFULNESS OF AI-POWERED VULNERABILITY 

DETECTION & REPAIR IN THE IDE 

Benjamin Steenhoek1* , Siva Sivaraman2 , Renata Saldívar Gonzalez3 , Yevhen Mohylevskyy4 ,          

Roshanak Zilouchian Moghaddam5 , and Wei Le6 

1,6 Department of Computer Science, Iowa State University, Ames, IA, 50011 

2-5 Data & AI team, Microsoft, Redmond, WA, 98052

Modifed from a manuscript published in the 47th International Conference on Software 

Engineering (ICSE 2025) 

Abstract 

Security vulnerabilities impose signifcant costs on users and organizations. Detecting and 

addressing these vulnerabilities early is crucial to avoid exploits and reduce development costs. 

Recent studies have shown that deep learning models can efectively detect security 

vulnerabilities. Yet, little research explores how to adapt these models from benchmark tests to 

practical applications, and whether they can be useful in practice. 

This chapter presents the frst empirical study of a vulnerability detection and fx tool with 

professional software developers on real projects that they own. We implemented DeepVulGuard, 

an IDE-integrated tool based on state-of-the-art detection and fx models, and show that it has 

promising performance on benchmarks of historic vulnerability data. DeepVulGuard scans code 

for vulnerabilities (including identifying the vulnerability type and vulnerable region of code), 

suggests fxes, provides natural-language explanations for alerts and fxes, leveraging chat 

∗ Work primarily done during an internship at Microsoft. 
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interfaces. We recruited 17 professional software developers, observed their usage of the tool on 

their code, and conducted interviews to assess the tool’s usefulness, speed, trust, relevance, and 

workfow integration. We also gathered detailed qualitative feedback on users’ perceptions and 

their desired features. Study participants scanned a total of 24 projects, 6.9k fles, and over 1.7 

million lines of source code, and generated 170 alerts and 50 fx suggestions. We fnd that 

although state-of-the-art AI-powered detection and fx tools show promise, they are not yet 

practical for real-world use due to a high rate of false positives and non-applicable fxes. User 

feedback reveals several actionable pain points, ranging from incomplete context to lack of 

customization for the user’s codebase. Additionally, we explore how AI features, including 

confdence scores, explanations, and chat interaction, can apply to vulnerability detection and 

fxing. Based on these insights, we ofer practical recommendations for evaluating and deploying 

AI detection and fx models. Our code and data are available at this link: 

https://doi.org/10.6084/m9.figshare.26367139. 

6.1 Introduction 

Security vulnerabilities impact users’ safety, security, and privacy and cost organizations 

millions of dollars per year [29, 24], with reports of breaches exposing millions of records 

becoming commonplace [3]. Early detection of vulnerabilities during the development phase can 

greatly reduce costs and mitigate potential impacts [7, 4, 23]. In recent years, deep learning (DL) 

vulnerability detection models have emerged as a promising approach for scanning code during 

software development [11, 46, 20]. These models can identify vulnerability patterns in code 

snippets and ofer the advantage of analyzing code during editing [12] with less confguration than 

traditional static analysis tools [21]. 

Despite promising benchmark performance [11, 46, 20], it remains unclear whether these 

models are actually useful in real-world development settings. In the past, Major organizations 

such as Microsoft [15], Google [42], Facebook [17], and Coverity [5] have reported a gap between 

benchmarking success and practical application with static analyzers. Recently, Fu et al. [21] 

https://doi.org/10.6084/m9.figshare.26367139
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conducted a preliminary controlled study with 6 developers, showing that AI tool support 

reduced the time to diagnose and fx a vulnerability from 10-15 minutes to 3-4 minutes and 

motivating further user studies of AI detection and fx tools. However, their study used a single 

bug from their dataset rather covering real-world code-bases and they only studied vulnerability 

detection and fxing. 

In our work, we recruited 17 professional developers from a major software company in a 

real-world development setting with their own projects; beyond detection and fxing, we also built 

and studied AI-powered explanation and chat interfaces, which have recently become prominent 

in the integrated development environments (IDEs) [1]. Our study provides a deeper 

understanding of the real-world usefulness and nuances of deploying these models. 

To carry out our study, we developed DeepVulGuard, an extension integrated with Visual 

Studio Code (VSCode) [34], a popular IDE with over 14 million active users. We used 

state-of-the-art models, CodeBERT [19, 12] and the GPT-4 large language model (LLM) [41], for 

detection and fx tasks. Participants scanned 24 projects, 6.9k fles, and over 1.7 million lines of 

source code, generating 170 alerts and 50 fx suggestions. To the best of our knowledge, ours is the 

frst study to evaluate a detection and fx tool with professional developers on their own projects. 

We initially evaluated DeepVulGuard’s potential for deployment by testing its detection and 

fx models on established vulnerability datasets. Our models achieved 80% precision, 32% recall, 

and a 46% F1 score on SVEN [22] for vulnerability detection and fxed 13% of vulnerabilities on 

the Vul4J [9] dataset. DeepVulGuard performs comparably or better than state-of-the-art 

models [16, 52, 8] and meets the threshold for acceptable false positives [15]. These results 

indicate that our models are promising for detecting and fxing security vulnerabilities and can 

generate meaningful results for the user study. 

Our results show that 59% of participants expressed interest in future use of DeepVulGuard, 

although there are several issues that limit its usefulness. For example, one problem was an high 

rate of false positives in practice, caused by incorrect vulnerability pattern recognition and lack of 

context about code snippets (e.g., inter-procedural vulnerabilities). This highlights the need for 
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more precise pattern recognition and better integration of environment and program context. 

Additionally, the requirement to trigger a manual scan signifcantly disrupted the users’ workfow; 

developers prefer tools that run in the background and alert them whenever potential 

vulnerabilities are detected. Regarding fxes, 75% of proposed security fxes were unsuitable to 

apply “as-is” due to lack of customization and incorrect integration into the code. Although some 

fxes were functionally correct, they were not tailored to the user’s codebase and could not be 

applied without signifcant modifcations. An interactive chat method shows promise to allow 

developers to guide the generation towards more applicable fxes. Our fndings ofer concrete 

recommendations for improving these pain points found in these tools. 

We make the following research contributions: 

1. We developed DeepVulGuard a VSCode extension for detecting, explaining and fxing 

vulnerabilities, incorporating insights from static analysis and AI tool research. Our tool 

allows customization of backend models, and we provide its code in our data package to 

support further user studies. DeepVulGuard uses a multi-task training approach for jointly 

predicting vulnerability classifcation, localization, and bug type. We also introduced a new 

vulnerability fltering method with LLMs which improved precision by over 20%. 

2. We conducted a user study with 17 professional software engineers at a major software 

company. Through interviews and surveys as they ran our tool on their own code, we 

quantitatively assessed multiple dimensions of usefulness for detection and fx tools and 

provided practical recommendations for improving deep learning-based vulnerability 

detection and fx tools. 

6.2 User Study Interface 

To study whether deep learning-based vulnerability tools can be useful in practice, we built 

DeepVulGuard, a Visual Studio Code extension that brings state-of-the-art detection + fx 

techniques to an IDE interface. DeepVulGuard allows users to (1) scan source code with 

CodeBERT and LLM models, (2) view the reported vulnerabilities and LLM-generated 
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Figure 6.1: An overview of DeepVulGuard’s user interface on an example program. (1) An editor 
alert; (2) Problems menu entry; (3) The explanation of the alert; (4a) Quick fx interaction; (4b) 
Ignore options; (4c) Fix trigger; (5) Suggested fx; (6) Explanation of the fx suggestion; (7) Accep-
t/Reject buttons. 

explanations directly inside the editor, and (3) generate suggestions for mitigating the 

vulnerability. We also implemented a telemetry module to collect user data, enabling longitudinal 

studies of AI-based vulnerability detection tools. As our study is the frst of its kind in this area, 

we believe our tool will be a benefcial contribution which facilitates future user studies of 

vulnerability tools. We released the extension code in our data package. The code can be easily 

adjusted to call alternative detection and fxing solutions to be studied with developers in a 

real-world setting. 

6.2.1 IDE Integration 

Figure 6.1 shows an overview of DeepVulGuard’s user interface. Users begin by requesting to 

scan a fle or directory. If any potential vulnerabilities arise, they are shown as highlights in the 

editor (1) and actionable entries in the Problems window (2), and a natural-language explanation 

of the vulnerability is shown in the chat panel (3). The user can use this information to assess the 

vulnerability and decide if a fx is required. They can also ask questions or make suggestions to 

the chatbot by sending follow-up messages. By clicking on the quick fx lightbulb (4a), the user 
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can ignore the specifc alert or alert types (4b), or generate a quick fx (4c). On requesting the 

quick fx, the suggested code modifcations will be presented in a dif view (5), showing the lines 

to be removed and added. As well, an explanation of the fx is shown in the chat panel (6). The 

user can modify the fx in the editor or suggest improvements with natural-language chat 

messages if desired, then Accept it to apply it to their fles or Reject it to revert to the original 

code (7). Users can enter chat messages (8), e.g. asking for clarifcation, information, or inputs 

which trigger the vulnerability, and our tool will generate a conversational response. 

We drew inspiration for our tool’s design from several foundational research studies on static 

analyzers and AI-assisted developer tools. Johnson et al. [27] showed that developers requested 

static analysis tools to be available in the IDE, along with quick fxes, and the ability to modify 

rule sets. Similarly, Christakis et al. [15] identifed bad warning messages, lack of suggested fxes, 

and poor visualization as pain points. Smith et al. [45] presented design guidelines, such as 

presenting alerts in actionable locations, integrating with their workfow by tracking progress, 

batch processing, allowing code editing during scans, and scalability of the interface. We 

incorporated all of these features into DeepVulGuard. 

A recent study on AI-powered code completion Wang et al. [50] found that users in focus 

groups valued the ability to view a measure of the model’s confdence. To study this in a practical 

implementation, we integrated confdence scores into our tool’s alerts, shown in Figure 6.1 (2). Fu 

et al. [21] conducted a survey study and found that most participants valued localizations, CWE 

type prediction, and quick fxes, so we integrated these features into our tool and evaluate them 

in our study, shown in Figure 6.1 (1, 2, and 4a). 

6.2.2 Model Architecture & Training 

Our tool can be easily confgured to leverage a wide variety of deep learning models or static 

analyzers. Figure 6.2 shows the workfow of the current design; specifcally, we implemented the 

following techniques (please refer to our data package [2] for the implementation details, including 

our model training procedure, dataset statistics, and hyper-parameters). 
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Figure 6.2: An overview of DeepVulGuard’s detection workfow. (1) Binary classifcation into 
vulnerable/not-vulnerable; (2) Localization; (3) Multi-class classifcation into one of 27 vulnera-
bility types; (4) Alert and explanation shown to the user. 

Fine-tuning CodeBERT for multi-task vulnerability detection: CodeBERT [19] and similar 

models consistently perform well on various vulnerability datasets [20, 21, 46] with relatively low 

latency which is suitable for detection in the editor [12]. We fne-tuned CodeBERT using 

multi-task learning to (1) predict whether a code snippet contains a vulnerability, (2) localize the 

tokens causing it, and (3) identify the vulnerability type. We trained on a dataset of over 1.3 

million alerts labeled by CodeQL in GitHub projects following Chan et al. [12]’s methodology, 

focusing on 27 vulnerability types related to Web security, e.g. Path Injection, SQL Injection, 

Hard-coded Credentials, Unvalidated URL Redirect, Cross-Site Scripting (details in data 

package). We generate alerts in the extension based on the predicted vulnerability type, 

confdence score, and localization. 

''' 

You are a vulnerability detector. Only respond with "Yes" or "No" and an explanation. Does the 

,→ following code snippet contain a SQL Injection vulnerability at line marked by ALERT? 

''' 

Figure 6.3: DeepVulGuard’s LLM flter prompt. 
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Filtering and explaining alerts with GPT-4: To further flter the false positives produced by 

fne-tuned CodeBERT, we used GPT-4 [41] to flter the alerts and generate explanations. We 

annotated the code snippet with a comment describing the alert type at the localized line, e.g., 

for SQL injection: // ALERT: This SQL query depends on a user-provided value (see our 

data package for all types of annotations). Then we instructed GPT-4 using the prompt shown in 

Figure 6.3. If the answer is Yes, the alert and explanation are shown to the user; otherwise, the 

alert is not shown ((4) in Figure 6.2). 

''' 

A static analyzer has identified a {rule_id} security vulnerability in the {language} method 

,→ below: 

``` 

{method} 

``` 

The SARIF result message is as follows: {message} 

{description} 

Write a fixed version of the method above and wrap it in triple backticks, then explain why your 

,→ version addresses the problem. 

''' 

Figure 6.4: DeepVulGuard’s fx model prompt. 

Prompting GPT-4 for repair and explanation: We used GPT-4 with custom prompts to generate 

and explain code fxes. The prompt, shown in Figure 6.4, includes the source code, vulnerability 

report, and an instruction to provide a fxed version of the code and an explanation. We displayed 

the explanation in the chat panel and inserted the code suggestion to show a dif with the original 

content, shown in Figure 6.1 on the right. 
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Figure 6.5: Performance of DeepVulGuard’s detection component on SVEN. 

6.2.3 Evaluating Detection and Fix Capabilities 

To ensure that DeepVulGuard is both efective and representative of the state-of-the-art, we 

tested its performance on benchmarks that resemble the real-world deployment scenario as closely 

as possible. To evaluate DeepVulGuard’s detection capability, we used: the SVEN dataset [22] 

with 380 high-quality vulnerability examples from open-source Python projects (93% label 

accuracy [16])). Our detection model supports all the security vulnerability types present in the 

dataset. We used a strict defnition for true positives: the predicted bug type must match, and 

localized line number must match the lines changed in the patch. Figure 6.5 shows on the SVEN 

dataset our model achieved 80% Precision and 32% Recall, with an F1 score of 46%. 

Overall, our results are better than or on par with the prediction quality of SOTA models on 

vulnerability detection. For example, most recently, Ding et al. [16] reported that SOTA models, 

including CodeBERT, attained 18-21 F1 score on their dataset of C/C++ vulnerabilities. We 

cannot directly compare our model with other SOTA models on our dataset as most are trained 

on C/C++-specifc memory or pointer bugs [32, 20, 46, 11, 47, 16]. 

Christakis et al. [15] found that most developers tolerate up to a 20% false-positive rate; with 

the LLM flter, our model meets this threshold on the SVEN dataset, with 80% precision. These 

results highlight DeepVulGuard’s practical efectiveness and potential for deployment in 

real-world applications. 
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To evaluate DeepVulGuard’s fx component, we used the Vul4J [9] dataset, which includes 

executable tests to reproduce security vulnerabilities. We assessed the test results, supplemented 

by manual validation, to verify that the suggested fxes mitigated issues without breaking other 

functionality. Among the 24 single-hunk bugs with vulnerability types that our tool handles, our 

model produced 3 (13%) correct fxes and 2 (8%) partial fxes, which resolved the issue but broke 

1-3 other tests; 10 (42%) fxes had errors inserting the generated code into the fle and 9 (37%) 

fxes could not compile. For efciency needed for using in IDE, we chose to not run LLM multiple 

times. These results show that our model performs similarly to SOTA evolution-based automated 

program repair (APR) tools [8] (13% correct fxes, taking up to 7 minutes in the 75th percentile, 

intersection n = 24) and LLMs such as Codex [52] (15.4% plausible fxes on the frst try, 

intersection n = 13). 

We conducted the above performance probe to confrm that DeepVulGuard can be used to 

conduct a meaningful study; that it is practical for handling real-world vulnerabilities and ofers 

performance comparable to state-of-the-art techniques. We did not aim for a comprehensive 

controlled evaluation to claim that DeepVulGuard outperforms the current state of the art. 

6.3 User Study Design 

We developed three research questions to guide our study. 

RQ1: Is DeepVulGuard useful in practice? 

RQ2: Which aspects of vulnerability detection + fx tools are most useful? 

RQ3: What features do developers want from vulnerability detection + fx tools? 

6.3.1 Study Design 

We carried out an exploratory case study [18] with a group of 17 professional developers from 

a major software company. We asked users to run DeepVulGuard on projects they were actively 

developing or were familiar with, and answer survey questions about their perception of the tool. 

To the best of our knowledge, our tool is the frst vulnerability detection + fx tool to be studied 
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Figure 6.6: Participant demographics and tool adoption. Where applicable, participants listed mul-
tiple items for the project domain, project language, and security tooling. 

in a real-world setting with professional developers on projects which they own. This study 

enabled us to explore many open questions such as the role of explanations, the developers’ 

tolerance for false-positives or delayed results, and what constitutes an efective fx in a secure 

development context. We chose an exploratory study over, e.g. a controlled study, because it 

elicits rich feedback from developers in a real-world setting. Our approach takes advantage of the 

developers’ deep understanding of their own projects, leading to a more accurate assessment of 

potential vulnerabilities and providing more valuable insights. 

Recruitment: We carried out our study with a group of 17 professional developers recruited from 

a major software development company. We recruited developers primarily using snowball 

sampling, with a 53% participation rate. In total, participants scanned a total of 24 projects, 6.9k 

fles, and over 1.7 million lines of source code, and generated 170 alerts and 50 fx suggestions. 

Figure 6.6 shows the participants’ demographic information (with the exception of one 

participant who declined the demographic survey), indicating that we studied a diverse set of 

developers from various levels of experience and backgrounds. Participants had a median of 11 

years of experience; participants worked on both front-end and back-end domains and represented 
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a diverse set of applications such as web applications, back-end services, IDE extensions. Most 

projects were written in C# or TypeScript. Most participants considered themselves 

security-conscious (median 4/5), and all had some form of a static analysis tool running in 

continuous integration or periodically, though more than half of the projects used tools for 

reasons of organizational compliance rather than individual initiative; most participants did not 

use security tools in the IDE. The majority of participants used AI-powered tools occasionally (a 

few times a week) or every day, such as code completion tools or chatbots, though three 

participants used AI tools rarely or not at all, stating that they did not fnd them useful. 

Interviews: Each participant ran our tool on a code-base associated with a production application 

which they actively develop and shared their perspective guided by both structured and free-form 

questions. We frst asked the participants to run our tool on a simple web server containing a 

known vulnerability to introduce the features of our tool: detection, fx, and chat. Then, we 

directed the participants to run the tool on security-critical areas of their application, such as web 

interfaces, API endpoints, database code, and fle processing code. 

We ran the study as a think-aloud empirical study [43, 30], meaning we asked developers to 

verbalized their thoughts while running the tool and processing the results. When participants 

explicitly asked questions, we provided help and answered questions to facilitate a smooth 

interview process and clarify the participant’s statements, e.g., about the meaning of diferent UI 

elements, bug type descriptions, or behavior of the tool, but we refrained from explaining the 

results of the tool or interpreting the meaning of its outputs to avoid biasing the study. Each 

interview lasted approximately 50 minutes, consisting of a 10-minute setup and demographic 

survey, average 28 minutes usage of the tool and 12 minutes post-usage survey and discussion. We 

interviewed all subjects over video calls, and with their full consent, recorded feld notes and 

demographic, audio, screen-capture, survey, and tool usage data. 

After they used the tool, we asked participants about various aspects of the tool: (1) their 

overall perception of the usefulness of the detection alerts and suggested fxes and their 

satisfaction with the speed (Q1-Q3, reported on a Likert scale from 1 to 5 from “not 
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useful/satisfed at all” (1) to “very useful/satisfed” (5)); (2) whether the tool fts their workfow, 

whether they trust in the tool, whether the reported alert types were relevant, and whether they 

would keep using the tool (Q4-Q7, reported as Yes/No). We also asked the participants what 

features they found especially useful and what features they would like to see in the tool. We 

asked the questions verbally during the interview, immediately after trying the tool, in order to 

collect free-form feedback on each question and ensure that the participant could recollect their 

experiences with the tool. 

We designed the initial set of interview questions, guided by our research questions and 

informed/inspired by fndings and open questions from previous studies of static analysis and AI 

tools [27, 15, 21, 50, 45, 6, 35]. Three authors tried the tool and all authors reviewed the survey 

questions, and we gathered feedback from outside researchers within our organization to improve 

the design of the planned questions. 

Data Analysis Process: We analyzed the data quantitatively and qualitatively, reporting the 

results in Section 6.4. 

To quantify users’ perceptions of our tool, we tallied the responses to the post-interview 

survey, shown in Figure 6.7. Regarding questions Q1-Q3, we report the mean and distribution of 

Likert scores, and regarding Q4-Q7, we report the proportion of “Yes” responses. We also 

categorized each alert or fx that the participants examined during the interviews into “Useful” or 

one of 8 problem categories, based on the participant’s explanation. We discuss the results in 

Section 6.4.1. 

We conducted a grounded-theory analysis to analyze the study participants’ rich free-form 

feedback [13], following the literature [27, 15, 26]. Grounded-theory analysis is a method used to 

analyze data by identifying recurring concepts, grouping these concepts into salient categories, 

and developing themes that provide an overall understanding of participants’ perceptions of the 

tool. These concepts are derived from participants’ quotations, refecting their thoughts while 

using the tool and their responses to survey questions. All the resulting concepts and groups are 

referred to as a codebook. 
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We analyzed over 11 hours of usage and survey transcripts and identifed a total of 161 codes 

in 12 distinct groups. Relevant codes are shown in Figure 6.8 and Figure 6.9. To create the initial 

codebook, the frst and second authors independently analyzed two randomly selected interviews 

and generated lists of recurring concepts. They then met to create a unifed list of concepts, 

create higher-level groups, and develop overall themes. Each author independently analyzed half 

of the remaining interviews, periodically syncing and jointly analyzing the same interviews to 

update the codebook and compare notes. Both raters agreed on all the classifcations for alert 

responses. This was an iterative process [13], where we created the initial codebook after 

conducting the frst 6 interviews and refactored/added groupings periodically as we conducted the 

remaining 11 interviews. We present our qualitative analysis in Section 6.4.2. 

During the interviews, study participants suggested several features they felt would be useful, 

which provide useful recommendations for tool builders and directions for further research; we 

identify these as concepts in our grounded-theory analysis and discuss these feature requests in 

Section 6.4.3. The anonymized demographic data, interview and survey script, and codebook are 

in our data package [2]. 

6.4 User Study results 

6.4.1 RQ1: Is DeepVulGuard useful in practice? 

Detection: Figure 6.7 reports the results of our post-interview survey. On average, participants 

rated DeepVulGuard’s alerts at 2.5 out of 5 for usefulness (Q1), with 2 participants giving it a 

rating of 4.5 or above and 3 participants giving it a rating of 1. Only 53% of participants felt that 

they trusted the tool’s warnings about vulnerability alerts (Q5). The biggest barrier to 

usefulness and trust in the tool’s alerts was the amount of false positives, with 30% of 

users explicitly reporting losing trust in the tool after frequently encountering false positives. The 

false positive rate in real-world settings was higher than in our SVEN dataset measurements 

(Section 6.2.3). We attribute this diference to varying languages and vulnerability types: SVEN 

contains Python code, whereas most participants worked on Typescript or C# which comprise 
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Figure 6.7: Summary of participants’ overall perceptions of DeepVulGuard, from our post-interview 
survey. 

only 6% of our training data. Additionally, SVEN examples are intra-procedural, lacking 

information about the calling context and runtime environment, which may widen the gap 

between benchmark data and real-world testing. 

76% of participants felt that the vulnerability types detected by the tool were relevant (Q6), 

with some participants expressing strong approval, for example: “Defnitely all of the all the 

categories of the vulnerabilities that were found here were good. They’re all ones that hit these 

kinds of code all the time.”. 

Fix suggestions: On average, participants rated DeepVulGuard’s fx suggestions at 2 out of 5 for 

usefulness (Q1). 2 participants gave it a rating of 4, and 7 participants gave it a rating of 1. For 

fxes, one of the most common issues was that the fx was not customized to the 

developer’s codebase, for example, creating a function to sanitize user inputs when the 

developer wants to reuse their existing sanitization library; this often prevented the users from 

directly applying the fx, requiring an overhaul to produce a fx with their intended approach. 
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This highlights a limitation of common exact match or execution-based metrics for evaluating 

AI-based fxes, as these metrics do not capture the practical nuances of generating fxes for 

real-world codebases. 

Speed: The average response time for the tool was 3.9 seconds per fle. More than half of the 

participants were “very satisfed” with the speed of the tool, rating it at 5/5 (Q3). When asked 

about the tool’s speed, one participant stated “Totally satisfed. I can wait for this kind of stuf” 

(referring to security alerts + fxes). 

Workfow integration: More than half (65%) of participants felt that the tool in its current state 

would not ft into their workfow (Q4). 14 out of 17 users expressed that the tool would be 

more useful if it was running in the background and scanning their code while they 

were editing or ran along with their build or commit commands; manually triggering 

the scan was a barrier to usage, since it required a stopping point in development. 

Summary: Although not fully satisfactory, the tool shows promise — 59% of participants 

expressed that they would keep using the extension. 

Figure 6.8 reports the participants’ responses to the 51 alerts and 24 fxes for which they 

provided direct feedback during the interviews, based on the categories assigned in our 

grounded-theory analysis. Here we display alerts from the combined CodeBERT + LLM model, 

excluding four participants who used the CodeBERT model. Participants considered 18% of 

alerts, and 25% of fxes, to be useful and without signifcant problems. The primary causes of 

false positive alerts were missing context (totaling 51% of alerts) and incorrect pattern 

recognition (31%). Missing context involved misidentifying variables as user-controlled or 

overlooking vulnerabilities handled by the calling context or runtime environment. Incorrect 

pattern recognition involved misidentifying harmless patterns as vulnerabilities, such as constant 

strings mistaken for hard-coded credentials. We hypothesize that incorporating references to the 

calling context and runtime environment [31], along with in-context examples [53] of commonly 

misidentifed patterns, into the LLM flter prompt shown in Figure 6.3 may help to address these 

limitations. 
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Figure 6.8: Participant responses to LLM-fltered alerts and LLM-generated fxes while using Deep-
VulGuard. 

21% of fxes were rejected because they were not customized to the user’s codebase – they did 

not incorporate existing functions in the project (e.g. sanitization) or didn’t comply with project 

style and linting rules, and thus could not be directly applied. Additionally, 21% did not address 

the underlying vulnerability, another 17% incorrectly inserted code generated by the LLM, 

resulting in syntax or indenting issues, and 8% of fxes mitigated the issue but broke existing 

functionality. 8% were placeholders containing instructional comments rather than functional 

fxes. 

6.4.2 RQ2: Which aspects of vulnerability detection + fx tools are most useful? 

Figure 6.9 summarizes the participants’ comments about diferent components of detection 

and fx tool components, based on the participants’ think-aloud feedback while using 

DeepVulGuard, which we categorized in our grounded-theory analysis. Based on their responses, 
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Figure 6.9: Participants’ in-use feedback on the aspects of DeepVulGuard. The aspects of the tool 
are organized into trees, where the leaf nodes are categories of comments from participants and the 
intermediate nodes are groupings of each category. Percentages show what portion of the comments 
on their respective aspects that each category constitutes; positive comments are green and negative 
comments are red. 

fx suggestions and confdence scores seem to be the most useful aspects of the tool, with 44% and 

50% positive feedback respectively. 

Fix suggestions: Fixes that have the correct initial approach allow the user to apply them with 

minimal changes. Out of the comments on fxes, 21% noted that the fxes could be applicable, 

with 7% of these noting that the fxes required minor changes such as changing variable names or 

error messages. 

Fixes gave developers insight on vulnerabilities and best security practices. 

Beyond mitigating the vulnerability, 14% of comments noted that seeing the dif between ‘bad’ 

and ‘good’ code helped them understand the root cause of the issue. Fixes can also provide 

guidance on secure best practices when developers are working on unfamiliar code (7%). One 

developer said, “If I knew I was starting in an area I wasn’t very familiar on the most secure 

practices, it would be very helpful.” 
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However, some fxes lacked context (39%) or were more complex than the user’s ideal solution 

(9%). Many security issues require multi-site edits, either when changing the semantics of a 

shared function or when encoding or decoding data; our tool is currently limited to fxing one 

function at a time, so the fx can lack context, which can result in breaking functionality, 

expressed by one participant as follows: “This is how [the fx] should be defned, but then I would 

have to go fnd all the places where it’s used and fx them all. And that might be a lot of places.” 

Incorporating additional context, such as the list of functions which call the function to be 

changed, could help provide more, contextualized fxes. 

Placeholder fx suggestions were less preferred for users who were expecting 

functional fxes. LLMs occasionally generate placeholder code by default, including containing 

instructional comments rather than functional fxes. Some users did not fnd these useful, 

constituting 9% of comments on fxes, such as “Well, that’s not helpful” and “It’s not really 

adding anything to the output”. Since placeholder fxes can negatively impact users who prefer 

functional fxes, it’s important to set expectations; a potential improvement could be to 

re-generate the fx when placeholders are initially generated, and if a functional fx cannot be 

provided, the placeholder fx should be accompanied by an explanatory message. 

Chat interactions added value by allowing developers to iterate on fxes. In one 

case where the fx used the wrong approach at frst, the developer iterated on the fx by frst 

suggesting a diferent approach and then specifying their style guidelines, and arrived at a fx 

which they would apply without having to write the code themselves, saying afterwards, “I like 

that this is conversational and I could do a few more rounds of interaction to understand what 

could be alternative solutions or better ways to approach this issue besides the initial suggestion”. 

Before the chat feature was implemented, 50% of participants expressed the desire to ask the 

chatbot for more information about alerts or to suggest modifcations to fxes. Recent research 

supports the potential usefulness of chat interactions. Nam et al. [35] found that developers 

completed more coding tasks within a given time when using a chatbot for code explanations 

compared to using a search engine. 



179 

Confdence score: Users overwhelmingly used the confdence score to rank issues by 

importance. This interaction constituted 44% of user feedback on this feature; an additional 6% 

noted that the confdence score was helpful for understanding the model’s prediction. The 

confdence score can be useful to rank issues, but should be displayed to the user with full 

understanding of its meaning; 39% of feedback indicated that participants were unclear about the 

meaning of the score. We hypothesize that integrating the severity score [39] with the model 

confdence score will make it more useful for prioritizing vulnerabilities. Finally, a high-confdence 

result which is a false-positive can degrade the trust in the tool, as seen in 11% of feedback; 

therefore, expectations should be managed. 

Vulnerability Explanations: Explaining the vulnerability and security best practices can be useful 

for providing comprehensive understanding of a vulnerability; 35% of feedback was positive, 

indicating that the explanations were understandable and helpful. One developer compared with 

existing static analysis tools: “Normally with a static analysis tool, if I get an error that I’m a 

little unsure on, I would have to go out to a website of track down [an explanation], so providing 

me a dif and some text here explained it a bit.” 

With explanations, brevity and adding visual annotations are important. 42% of 

feedback mentioned that the alert descriptions were too verbose; 11% mentioned that the verbiage 

was too broad to be useful. To quote one developer, “If I see the code, it says sanitized input then 

OK, so I need to sanitize it... I would be more comfortable looking at the fx to know what the 

issue it is detecting, than read the verbose text.” Later they stated, “I usually read one or two 

lines and then I stopped there. If it is too verbose, I probably don’t pay too much attention.”. 

Another developer noted, “Rather than giving me a wall of text, it would be great if it gave me bad 

and good examples.” One suggestion from this participant is to visually annotate the explanation 

by presenting labels with short, recognizable names, such as Path Injection, and allow the user to 

read the full explanation if they are interested. 

Users expect the tool’s outputs to be consistent, which introduces challenges 

when integrating LLM explanations and chat. 11% of feedback on explanations noted 
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inconsistencies between the explanation and subsequent fxes. For example, one user noted that 

an alert’s explanation specifed not to use an insecure hashing function btoa, while the suggested 

fx used this function. While this specifc issue could be solved by simply including the 

LLM-generated explanation in the fx prompt, the general issue is important for tool builders to 

be aware of. 

Localization: Users preferred highlights on a complete line or variable/string/function 

call. DeepVulGuard highlights the tokens which were localized by the model, which may not 

necessarily align to semantic boundaries. 21% of participant feedback noted that localizations was 

helpful, especially the ability to zoom to a vulnerability’ location. However, 58% of feedback 

noted that the localization seemed incomplete because it only highlighted part of the structure it 

was referencing. This behavior is by-design since the underlying model was specifcally trained to 

only fag parts of the code that contributed to the vulnerability. However, this was one reason 

that users lost trust in our tool; to quote one user, “The fact that the squiggle starts part way 

through a word made me wonder – Oh, is it just on the wrong line, or maybe got some wires 

crossed somewhere?”. Our model detects vulnerable code patterns at the fault location. In 21% 

of feedback, users noted that they would prefer to see an alert in a more actionable 

location – the root cause, or source for input validation issues, rather than at the 

fault location; one user stated, “Preferably, I’d actually do that check way before this, either 

where we download or where we extract, and that way we know that when we get here, this path is 

already sanitized.”. 

6.4.3 RQ3: What features do developers want from vulnerability detection + fx 

tools? 

Figure 6.10 displays a word cloud of feature suggestions from the study, identifed through our 

grounded-theory analysis. We implemented basic versions of some highly requested features from 

early interviews, specifcally alert suppression and basic chat interaction. We measured the 

frequency of these requests from the participants who lacked these features. 
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Figure 6.10: The relative frequency of features suggested by the study participants. 

Chat interaction was a frequently requested feature. Before implementing the chat 

feature, 3 out of 6 participants wanted a chat interface to better understand alerts, view examples 

of inputs that triggered them, and refne suggested fxes. Users who had chat available found it 

useful; for example, one user asked for alternative suggestions to address an alert and expressed, 

“Yeah, these are good ideas. This would seed some ideas for me”. 

Starting the scan manually was a major disruption to developers’ workfow. 12 out 

of 17 participants expressed that they would prefer if the tool scanned their code in the 

background and reported problems while they were editing, and 3 participants said it would be 

useful to trigger scans through a build or commit hook. One developer explained as follows: 

“From a workfow perspective, I don’t typically reach a point where I say, ‘Oh, I’m just gonna stop 

now and go check for security issues’.” 

Before we implemented the suppression feature, 5 out of 6 participants wanted the ability to 

suppress irrelevant alerts. One user specifcally mentioned that the tool’s outputs would be more 

manageable if they could flter out alerts identifed as false positives or those frequently incorrect 

or irrelevant to their use case. Participants suggested several other enhancements, such as options 

for long-running overnight scans, click-to-scan UI interactions, the ability to scan entire directories 

or projects and their dependencies, and team-shared confgurations sensitivity and rulesets. 
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6.5 Discussions 

Based on our study, we fnd that current SOTA AI vulnerability detection and fx 

tools are not yet satisfactory, but developers remain eager to continue using them. 

This motivates us to continue researching and improving deep learning based methods and tools 

of vulnerability detection and fx. We have highlighted key lessons from our study in bold in 

Section 6.4. Here, we expand on several aspects of evaluating and deploying AI detection and fx 

tools. 

Our detection results show a substantially higher false positive rate in real-world deployment 

compared to benchmark tests. Our study indicates it is impractical to (re)train a model for every 

new code base due to the lack of labeled data. While current test data for AI models often come 

from the same projects as the training data, in real-world scenarios, AI models are typically 

applied to unseen projects. Additionally, current deep learning models handle one function at a 

time [44], including DeepVulGuard; however, we see that many vulnerabilities in real-world code 

are related to multiple functions and the runtime environment. Lacking such program and 

environment context led to 51% of our tool’s alerts being identifed as false positives, as shown in 

Figure 6.8. This result highlights the need for vulnerability benchmarks that incorporate more 

realistic contextual information. 

We also see that developers usually have specifc defnitions of “false positive” tailored to their 

own codebase and deployment scenario. For instance, one user dismissed a warning about 

sensitive data in an SSH key fle, citing feasibility issues despite acknowledging the vulnerability: 

“This is a problem, but I don’t think there’s anything they can do about it... I mean, it is a 

vulnerability – but if somebody can obtain access to the fle system, then they have access to all 

kinds of password fles.” These user-specifc assumptions are difcult to incorporate into dataset 

labels, emphasizing the need for holistic evaluations in realistic development scenarios. To 

improve AI to predict likely feasible bugs, we may need to construct datasets using bugs with 

reproducible exploits rather than potential (but possibly infeasible) vulnerabilities from CVEs. 
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We found that 21% of suggested fxes, though functionally-correct (i.e. they would pass unit 

tests), were rejected because they were not customized to the user’s code-base. Current test 

execution-based benchmarks [9, 28] do not capture this critical issue, highlighting the need for 

more realistic evaluations that consider this aspect of fx suggestions. 

Based on our study, we make several recommendations for deploying AI detection and fx 

tools. First, when we deployed multiple models for detection, explanations, and fx, we need to 

ensure that the outputs of these models are consistent, so we do not confuse users. Second, 

LLM-generated explanations were often too verbose, suggesting a need to guide the LLM to 

generate concise output and code examples, and to add visual annotations. Third, users prioritize 

issues based on the displayed score, and this score should refect important aspects such as 

severity, not just the confdence score. 

6.6 Threats to Validity 

Since our work is an empirical study, there may be limits to the generalizability of its 

fndings [25]. 

External and internal validity: Our sample of 17 developers from a large company may not fully 

represent all software developers’ opinions. Research estimates that 16 users are typically 

sufcient to fully understand the challenges users face when using a tool [37]. This aligned with 

our fndings, as the fnal two rounds of fve interviews each added only 5 and 2 new codes 

respectively, indicating saturation. We recruited 11 more developers than a similar user study [21]. 

We included developers with experience ranging from 3 to over 30 years, covering projects in four 

programming languages and including backend, frontend, and IDE extension code. 

Following the literature’s recommendation to test iteratively with small user groups [36], we 

frst tested with three participants, added key features to our tool like directory scan, 

click-to-scan, and LLM flter, then tested with three more users before adding chat functionality 

and alert suppression, and fnally included the remaining eleven participants. We account for the 

developing feature set in Figure 6.10 and report only the LLM flter model responses in Figure 6.8. 
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We studied one set of models and 27 vulnerability types, which may limit generalization to 

other models and vulnerability types. The focus of our study was on understanding the practical 

usefulness of DL models in the IDE, so we chose to study one set of SOTA models (validated in 

Section 6.2.3). Our tool supports the top 25 CWEs [49], plus the most frequent vulnerability types 

CodeQL detected in our dataset. Future work could study more models and vulnerability types. 

Construct validity: We used think-aloud interviews, discussed in Section 6.4.2, which may result 

in users providing personal preferences rather than real system issues [40]. We addressed this by 

using grounded-theory analysis to assess the users’ objective verdicts on root causes of alerts and 

fxes (Figure 6.8) and quantify the support for each feedback category (Figure 6.9). 

6.7 Related Work 

Deep learning for vulnerability detection and fxing: Recent research has explored various DL 

methods for vulnerability detection, including graph neural networks (GNNs) [11, 32, 46] and 

transformer models [54, 20, 12, 21]. GNNs typically require complete source code to generate the 

necessary abstract syntax trees (ASTs) and control fow graphs (CFGs), which limits their 

efectiveness on incomplete code snippets. Our model is based on the state-of-the-art approach 

from Chan et al. [12], which optimizes for both in-IDE latency and incomplete code snippets. 

Compared to Fu et al. [21], which uses three separate models for localization, type, and severity 

prediction, we fne-tune our model to predict the presence, location, and type of vulnerabilities in 

a single forward pass, enhancing both simplicity and efciency. Additionally, we introduce a novel 

LLM-based fltering technique that improved our model’s precision by 20%; this is compatible 

with Fu et al. [21]’s approach. We also integrate SOTA LLMs for fx suggestions and show that 

they perform on par with existing DL and APR tools in Section 6.2.3. 

Benchmark studies of AI detection + fx models: Several empirical studies of DL models 

corroborate our results in underscoring the need for user studies in realistic scenarios. 

Chakraborthy et al. [11] found that DL models often face issues with data duplication and 

unrealistic distributions of vulnerable classes. Chen et al. [14] showed that existing models have 
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difculty generalizing to unseen projects, but increasing the volume of training data can improve 

their generalization. Steenhoek et al. [47] demonstrated that while some models perform well on 

benchmarks matching their training data, they may struggle to generalize to new projects and 

bug types. Recently, Ding et al. [16] indicated that current benchmarks may overestimate the 

performance of deep learning models. 

User studies of static analysis and AI tools: We developed our tool based on fndings and 

recommendations from several user studies of traditional static analysis tools [27, 15, 45] (see 

Section 6.2.1 for more details). A controlled study by Fu et al. [21] involving six software 

practitioners demonstrated that DL detection & fx tools can be benefcial. They also surveyed 21 

practitioners about the usefulness of features like localization, type and severity prediction, and 

fx suggestions, which informed our tool’s design. To our knowledge, we are the frst to conduct a 

study with professional developers on projects they own in a real-world deployment setting. There 

has been work on investigating whether APR tools are useful in practice. Surveys showed that 

most software practitioners prefer manual bug fxes over current APR tools due to unreliable and 

slow patch production [33, 51, 38]. Campos et al. [10] deployed APR in the IDE in a controlled 

study with 16 developers on a given project; APR increased developers’ speed but may impact 

maintainability. We studied deep learning tools in a real-world development scenario where 

professional developers run the tool on their own projects. The tool is fast and can improve fxes 

via conversations with developers. 

6.8 Conclusions 

Recent research has introduced various deep learning vulnerability tools with promising 

benchmark performance. However, there has been no extensive user study on their real-world 

utility. To address this, we conducted a comprehensive user study with 17 professional developers, 

analyzing 24 projects, 6.9k fles, and over 1.7 million lines of code, generating 170 alerts and 50 fx 

suggestions. Our study revealed that while current models show promise, they are not yet 

practical for everyday use due to challenges with (1) false positives caused by missing code 
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context and incorrect pattern recognition, and (2) fxes which were not customized to the 

codebase. Based on user feedback, we make several recommendations for aligning model 

evaluations with real-world development scenarios, and for deploying models in practice. 

Through our user study, we identifed several areas for further research. One direction is to 

support automatic code scanning and address questions such as when to scan and how much code 

context to include. Another direction is to further develop AI powered chat interaction. Our 

preliminary chatbot implementation showed useful for explaining vulnerabilities and generating 

fxes. Future research should also resolve consistency issues among AI models’ outputs. 
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6.A Appendix: Detection model 

This appendix lists the details of our detection model and training procedure. 

6.A.1 Training procedure 

We implemented our detection model by fne-tuning CodeBERT [19], following the procedure 

and using the dataset introduced in Chan et al. [12]. We chose this model because it is suited to 

Edit-Time vulnerability detection, localization, and bug-type prediction, while other 

state-of-the-art models we considered [20, 46] are trained on and primarily intended for complete 

code snippets without the ability to both localize lines and predict a specifc bug type. We 

fne-tuned the CodeBERT model for multi-task prediction. For each given code snippet, it 

predicts: (1) whether the snippet contains a vulnerability, (2) whether any specifc tokens in the 

snippet contain a vulnerability, and (3) the type of the vulnerability. See Figure 2 in the paper for 

an overview of our detection model approach. We replaced the fnal classifer layer (normally 

performing binary classifcation) with a layer of size (d + k), where d is the number of tokens in 

the context window (512 for CodeBERT) and k is the number of bug types in our training 

dataset (27 in our case), followed by a softmax layer. During training, we labeled the tokens 

indicated in the CodeQL alert with 1 when the code contained a vulnerability related to that 

token and 0 otherwise, did likewise for the bug types, and trained the model to jointly predict 

these 512 + 27 = 539 classes for each example. To train the model, we used a dataset of over 1.3 

million alerts from CodeQL, collected using the same methodology as Chan et al. [12]. 

We trained the CodeBERT model on a dataset containing over 1 million code snippets in 

seven languages (C/C++, C#, Go, Java, JavaScript/TypeScript, Python, and Ruby), including 

bug types corresponding to 27 CodeQL rules marked as impactful in the CWE database [48], 

including Path Injection, SQL injection, Cross-Site Scripting (XSS), URL Redirection, 

Hard-coded Credentials, and Plain-Text Logging of Sensitive Data. We found that this multi-task 

fne-tuning was efective for providing localization and bug type classifcation, as shown in Section 

II-C in the paper. 
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6.A.2 Dataset statistics

Table 6.1: Proportion of alerts in each language. 

Language Percentage 

js 
py 
java 
c 
ts 
go 
cpp 
html 
cs 
tsx 
cc 
jsx 
rb 
mjs 
h 
hpp 
es6 
xhtml 

40.1% 
30.3% 
9.2% 
5.4% 
5.1% 
4.8% 
1.6% 
1.1% 
0.8% 
0.5% 
0.4% 
0.3% 
0.1% 
0.1% 
0.1% 
0.0% 
0.0% 
0.0% 

Type Percentage 

path-injection 18.1% 
sql-injection 16.8% 
incomplete-sanitization 13.1% 
unvalidated-url-redirection 7.7% 
refected-xss 7.6% 
stack-trace-exposure 7.2% 
clear-text-logging 6.3% 
hardcoded-credentials 6.0% 
weak-cryptographic-algorithm 3.2% 
insecure-randomness 2.1% 
overly-permissive-fle 1.9% 
command-line-injection 1.5% 
clear-text-storage-sensitive-data 1.4% 
incomplete-hostname-regexp 1.3% 
ssrf 1.3% 
fask-debug 1.3% 
regex-injection 0.9% 
insufcient-password-hash 0.9% 
bind-socket-all-network-interfaces 0.6% 
code-injection 0.6% 
tarslip 0.1% 
weak-crypto-key 0.1% 
cleartext-storage-fle 0.1% 

6.A.3 Full list of languages in the training dataset, by fle extension

• .js • .py • .h • .rb

• .ts • .cs • .hpp

• .jsx • .cpp • .java

• .tsx • .c • .go
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6.A.4 Hyperparameters

• n epochs: 200

• batch size: 24

• learning rate: 2e-5
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CHAPTER 7. GENERAL CONCLUSION 

Now that deep learning models have demonstrated promising capabilities for vulnerability 

detection, it has become essentially important to understand these models (especially their 

limitations) and develop techniques to apply them to real-world code. This dissertation provides a 

deep and comprehensive study of the state-of-the-art models, including diverse evaluation 

scenarios and deployment in a real-world user study, and shows our successful eforts to improve 

these models by integrating static and dynamic analysis. 

7.1 Summary of Contributions 

First, we performed comprehensive empirical studies of a wide range of deep learning models. 

In Chapter 2, we evaluated fne-tuned transformers and graph neural networks, which were the 

state-of-the-art at the time. Through this, we showed that these models have high variability in 

their predictions; that training on a single type of vulnerability generally performed better than 

multi-type training; that performance did not increase signifcantly by simply increasing the 

dataset size; and that models tended to focus on textual code patterns apart from the root cause 

of vulnerabilities. In Chapter 5, as large language models (LLMs) began to show new capabilities, 

we evaluated LLMs using state-of-the-art prompting techniques. We found that LLMs could not 

perform substantially better than random guessing and could not diferentiate buggy and fxed 

versions of code; that they often made errors in understanding code, hallucinating, and logically 

reasoning to a conclusion; and that they performed far worse than humans in localizing bugs. Our 

fndings from these empirical studies continue to apply to new approaches for applying deep 

learning models, as many of the problems we found are yet unsolved. 

Based on the results of our empirical studies, we saw that models trained for textual pattern 

matching were limited in their understanding of vulnerability semantics and failed to generalize to 
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unseen data. We developed two approaches to integrate program analysis into these models: static 

analysis with DeepDFA (Chapter 3) and dynamic analysis with TRACED (Chapter 4). We found 

that integrating static and dynamic analysis allowed these models to improve on the 

state-of-the-art performance while improving other areas of efciency and generalization. 

DeepDFA yielded better generalization, including generalization to unseen datasets, and greater 

efciency in terms of training data and runtime resources, than text-based models. TRACED 

demonstrated the ability to predict function execution better than statically pre-trained models, 

and yielded greater performance on two downstream tasks: code clone detection and vulnerability 

detection. Both of these works represent an initial step towards integrating program analysis with 

deep learning, but more open questions remain about how to broadly and efectively utilize these 

new techniques. 

Finally, in Chapter 6, we ran a user study on an IDE-integrated instantiation of 

state-of-the-art deep learning models, reporting several fndings which were unseen because they 

were difcult to measure in ofine benchmark evaluations. We found that, when deployed in 

practice, the models tend to generate a high rate of false positives and produce fxes which were 

not immediately applicable to the codebase. We also surfaced several feature requests which were 

highly desired by users, such as chat integration and automatic scanning. Our fndings motivate 

investigation into how to mitigate the pain points expressed by developers and longitudinal 

studies of how these tools are best used by developers. 

7.2 Future Work 

As future work from Chapter 3, we envision that DeepDFA can be extended to integrate more 

datafow analyses [2] and abstract interpretation [1] techniques. As our work showed marked 

improvement even when tightly scoped to reaching defnitions analysis with the Kildall method, 

we believe that it only scratches the surface of possibilities of this technique. 

Building on Chapter 4, we would like to scale up the integration of execution information. 

TRACED was pre-trained on contest programs from Project CodeNet [3], but the next step will 
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be to pre-train on a larger dataset of execution traces from realistic programs, which contain 

much more complexity and diversity than contest programs. We believe that this would extend its 

applications to be more efective for real-world programs. 

Chapter 5 showed that LLMs often experienced Code Understanding errors. We plan to 

integrate static analysis to extract a reliable set of facts about the code under analysis, and 

include these facts in the prompts given to the model; given that Logic errors also appeared 

frequently, we also want to explore ways to make LLM reasoning more faithful, such as 

self-consistency [4]. 

Finally, following up on Chapter 6, we plan to continue studying the deployment of deep 

learning models in the IDE scenario, building on the DeepVulGuard prototype and initial user 

study. User feedback motivated the addition of several specifc features, such as automatic 

scanning, in-depth chat interaction, and false-positive mitigation. 
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